(Replacing page with 'Text slecture')
Line 1: Line 1:
[[Category:slecture]]
+
Text slecture
[[Category:ECE438Fall2014Boutin]]
+
[[Category:ECE]]
+
[[Category:ECE438]]
+
[[Category:signal processing]] 
+
 
+
<center><font size= 4>
+
Frequency domain view of the relationship between a signal and a sampling of that signal
+
</font size>
+
 
+
A [https://www.projectrhea.org/learning/slectures.php slecture] by [[ECE]] student Yerkebulan Yeshmukhanbetov
+
Partly based on the [[2014_Fall_ECE_438_Boutin|ECE438 Fall 2014 lecture]] material of [[user:mboutin|Prof. Mireille Boutin]].
+
</center>
+
 
+
----
+
<font size = 3>
+
==Outline==
+
#Introduction
+
#Derivation
+
#Example
+
#Conclusion
+
 
+
----
+
 
+
==Introduction==
+
 
+
In this slecture I will discuss about the relations between the original signal <math> X(f) </math> (the CTFT of <math> x(t) </math>  ), sampling continuous time signal <math> X_s(f) </math> (the CTFT of <math> x_s(t) </math> ) and sampling discrete time signal <math> X_d(\omega) </math> (the DTFT of <math> x_d[n] </math> )  in frequency domain and give a specific example showing the relations.
+
----
+
 
+
==Derivation==
+
 
+
The first thing which need to be clarified is that there two different types of sampling signal: <math> x_s(t) </math> and <math> x_d[n] </math>. <math> x_s(t) </math>  is created by multiplying a impulse train <math> P_T(t) </math> with the original signal <math> x(t) </math> and actually <math> x_s(t) </math>  is  <math> comb_T(x(t)) </math> where T is the sampling period.
+
However the <math> x_d[n] </math> is <math> x(nT) </math> where T is the sampling period.
+
 
+
Now we first concentrate on the relationship between <math> X(f) </math> and <math> X_s(f) </math>.
+
 
+
We know that <math> x_s(t) = x(t) \times P_T(t) </math>, we can derive the relationship between <math> x_s(t) </math> and <math> x(t) </math> in the following way:
+
 
+
<div style="margin-left: 3em;">
+
<math>
+
\begin{align}
+
F(comb_T(x(t)) &= F(x(t) \times P_T(t))\\
+
&= X(f)*F(P_T(t))\\
+
&= X(f)*\frac{1}{T}\sum_{n = -\infty}^\infty \delta(f-\frac{n}{T})\\
+
&= \frac{1}{T}X(f)*P_\frac{1}{T}(f)\\
+
&= \frac{1}{T}rep_\frac{1}{T}X(f)\\
+
\end{align}
+
</math>
+
</div>
+
<font size>
+
 
+
Show this relationship in graph below:
+
 
+
----
+
 
+
==example==
+
 
+
[[Image:Xfcbt.png]]
+
 
+
[[Image:xsfcbt.png]]
+
 
+
----
+
 
+
==Derivation==
+
 
+
Then we are going to find the relation between <math> X_s(f) </math> and <math> X_d(\omega) </math>
+
 
+
We know another way to express CTFT of <math> x_s(t) </math>:
+
 
+
<div style="margin-left: 3em;">
+
<math>
+
\begin{align}
+
X_s(f) &= F(\sum_{n = -\infty}^\infty x(nT)\delta(t-nT))\\
+
&= \sum_{n = -\infty}^\infty x(nT)F(\delta(t-nT))\\
+
&= \sum_{n = -\infty}^\infty x(nT)e^{-j2\pi fnT}\\
+
\end{align}
+
</math>
+
</div>
+
<font size>
+
 
+
compare it with DTFT of <math> x_d[n] </math>:
+
 
+
<div style="margin-left: 3em;">
+
<math>
+
\begin{align}
+
X_d(\omega) &= \sum_{n = -\infty}^\infty x_d[n]e^{-j\omega n}\\
+
&= \sum_{n = -\infty}^\infty x(nT)e^{-j\omega n}\\
+
\end{align}
+
</math>
+
</div>
+
<font size>
+
 
+
we can find that:
+
 
+
<div style="margin-left: 3em;">
+
<math>
+
\begin{align}
+
X_d(2\pi Tf) &= X_s(f)\\
+
\end{align}
+
</math>
+
</div>
+
<font size>
+
 
+
if <math> f = \frac{1}{T} </math>
+
 
+
we have that:
+
 
+
<div style="margin-left: 3em;">
+
<math>
+
\begin{align}
+
X_d(2\pi ) &= X_s(\frac{1}{T})\\
+
\end{align}
+
</math>
+
</div>
+
<font size>
+
 
+
from this equation, we can know the relationship between <math> X_s(f) </math> and <math> X_d(\omega) </math> and the relationship is showed in graph as below:
+
 
+
----
+
 
+
==example==
+
 
+
[[Image:xsfcbt.png]]
+
 
+
[[Image:xdwcbt.png]]
+
 
+
----
+
 
+
==conclusion==
+
 
+
So the relationship between <math> X(f) </math> and <math> X_s(f) </math> is that <math> X_s(f) </math> is a a rep of <math> X(f) </math> in frequency domain with period of <math> \frac{1}{T} </math> and magnitude scaled by <math> \frac{1}{T} </math>.
+
the relationship between <math> X(f) </math> and <math> X_d(\omega) </math> is that <math> X_d(\omega) </math> is also a a rep of <math> X(f) </math> in frequency domain with period <math> 2\pi </math> and magnitude is also scaled by <math> \frac{1}{T} </math>, but the frequency is scaled by <math> 2\pi T </math>
+
----
+

Revision as of 10:01, 7 October 2014

Text slecture

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman