Line 28: Line 28:
 
In this slecture I will discuss about the relations between the original signal <math> X(f) </math> , sampling continuous time signal <math> X_s(f) </math> and sampling discrete time signal <math> X_d(\omega) </math>  in frequency domain and give a specific example showing the relations.
 
In this slecture I will discuss about the relations between the original signal <math> X(f) </math> , sampling continuous time signal <math> X_s(f) </math> and sampling discrete time signal <math> X_d(\omega) </math>  in frequency domain and give a specific example showing the relations.
 
----
 
----
 +
 +
==Derivation==
 +
 +
The first thing which need to be clarified is that there two different types of sampling signal: <math> x_s(t) </math> and <math> x_d[n] </math>. <math> x_s(t) </math>  is created by multiplying a impulse train with the original signal which is known as a <math> comb_T(x(t))  </math>

Revision as of 20:22, 5 October 2014


Frequency domain view of the relationship between a signal and a sampling of that signal

A slecture by ECE student Botao Chen

Partly based on the ECE438 Fall 2014 lecture material of Prof. Mireille Boutin.


Outline

  1. Introduction
  2. Derivation
  3. Example
  4. Conclusion

Introduction

In this slecture I will discuss about the relations between the original signal $ X(f) $ , sampling continuous time signal $ X_s(f) $ and sampling discrete time signal $ X_d(\omega) $ in frequency domain and give a specific example showing the relations.


Derivation

The first thing which need to be clarified is that there two different types of sampling signal: $ x_s(t) $ and $ x_d[n] $. $ x_s(t) $ is created by multiplying a impulse train with the original signal which is known as a $ comb_T(x(t)) $

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin