Line 18: Line 18:
  
 
''MATLAB Plot of <math>X_{s}</math>(f)''
 
''MATLAB Plot of <math>X_{s}</math>(f)''
 +
 +
[[Image:stein_test_picture.png]]
  
 
Observe that <math>X_{s}</math>(f) consists of <math>(1/T_{s})</math>*X(f) repeated every <math>1/T_{s}</math>.
 
Observe that <math>X_{s}</math>(f) consists of <math>(1/T_{s})</math>*X(f) repeated every <math>1/T_{s}</math>.

Revision as of 12:42, 4 October 2014


Slecture_Nyquist_Theorem_Stein



The Nyquist Theorem states that it is possible to reproduce a signal from sampled version of that signal given that the sampling frequency is greater than twice the greatest frequency component of the original signal.


Proof

Let's begin by looking at X(f) and $ X_{s} $(f):

MATLAB Plot of X(f)

438slecture X s final.png

MATLAB Plot of $ X_{s} $(f)

Stein test picture.png

Observe that $ X_{s} $(f) consists of $ (1/T_{s}) $*X(f) repeated every $ 1/T_{s} $.

If we use a low-pass filter with gain $ T_{s} $ on $ X_{s} $(f), we can obtain the original signal if the repetitions don't overlap.

For this case to be met, $ 1/T_{s} - f_{m} $ must be greater than $ f_{m} $.

In other words,

$ \frac{1}{T_{s}} > 2f_{m} $



Back to 2014 Fall ECE 438 Boutin

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn