Line 1: Line 1:
[[Category:Slecture template ECE438F14]][[Category:Slecture template ECE438F14]][[Category:Slecture template ECE438F14]][[Category:Slecture template ECE438F14]][[Category:Slecture template ECE438F14]]
+
[[Link title]][[Category:slecture]]
 +
[[Category:ECE438Fall2014Boutin]]  
 +
[[Category:ECE]]
 +
[[Category:ECE438]]
 +
[[Category:signal processing]]
  
=Text Slecture=
+
<center><font size= 5>
 +
DTFT of a Cosine Sampled Above and Below the Nyquist Rate
 +
</font size>
  
 +
A [https://www.projectrhea.org/learning/slectures.php slecture] by [[ECE]] student Sahil Sanghani
  
 +
Partly based on the [[2014_Fall_ECE_438_Boutin|ECE438 Fall 2014 lecture]] material of [[user:mboutin|Prof. Mireille Boutin]].
 +
</center>
 +
----
  
Put your content here . . .
+
== Outline ==
 +
* Introduction
 +
* Useful Background
 +
* DTFT Example of a Cosine Sampled Above the Nyquist Rate
 +
* DTFT Example of a Cosine Sampled Below the Nyquist Rate
 +
* Conclusion
 +
* References
  
 +
----
 +
----
  
 +
== Introduction ==
 +
In this Slecture, I will walk you through taking the DTFT of a pure frequency sampled above and below the Nyquist Rate. Then I will compare the differences between them.
 +
----
 +
== Useful Background ==
 +
Nyquist Condition: <span class="math"> <em>f</em><sub><em>s</em></sub> = 2 * <em>f</em><sub><em>m</em><em>a</em><em>x</em></sub></span><br />DTFT of a Cosine: <span class="math"> <em>x</em><sub><em>d</em></sub>[<em>n</em>] = <em>c</em><em>o</em><em>s</em>(2<em>π</em><em>n</em><em>T</em>) → <em>X</em>(<em>ω</em>) = <em>π</em>(<em>δ</em>(<em>ω</em> − <em>ω</em><sub><em>o</em></sub>) + <em>δ</em>(<em>ω</em> + <em>ω</em><sub><em>o</em></sub>))</span>, for <span class="math"><em>ω</em>  ∈  [ − <em>π</em>, <em>π</em>]</span><br />The DTFT of a sampled signal is periodic with <span class="math">2<em>π</em></span>.</p>
  
 +
== DTFT of a Cosine Sampled Above the Nyquist Rate ==
 +
<p>For our original pure frequency, let’s choose the E below middle C. The E occurs at 330<span class="math">H</em><em>z</em></span>.<br /><br /></p>
 +
<p><br /><span class="math"><em>x</em>(<em>t</em>) = <em>c</em><em>o</em><em>s</em>(2<em>π</em> * 330<em>t</em>)</span><br /></p>
 +
<p>Now let’s sample this pure cosine at a frequency above the Nyquist Rate. The Nyquist Rate is <span class="math"> <em>f</em><sub><em>s</em></sub> = 2 * <em>f</em><sub><em>m</em><em>a</em><em>x</em></sub> = 2 * (330<em>H</em><em>z</em>) = 660<em>H</em><em>z</em></span>. Let’s sample at 990<span class="math"><em>H</em><em>z</em></span>.
  
[[ Slecture template ECE438F14|Back to Slecture template ECE438F14]]
+
[[2014_Fall_ECE_438_Boutin|Back to ECE438, Fall 2014]]

Revision as of 05:17, 2 October 2014

Link title

DTFT of a Cosine Sampled Above and Below the Nyquist Rate

A slecture by ECE student Sahil Sanghani

Partly based on the ECE438 Fall 2014 lecture material of Prof. Mireille Boutin.


Outline

  • Introduction
  • Useful Background
  • DTFT Example of a Cosine Sampled Above the Nyquist Rate
  • DTFT Example of a Cosine Sampled Below the Nyquist Rate
  • Conclusion
  • References


Introduction

In this Slecture, I will walk you through taking the DTFT of a pure frequency sampled above and below the Nyquist Rate. Then I will compare the differences between them.


Useful Background

Nyquist Condition:  fs = 2 * fmax
DTFT of a Cosine:  xd[n] = cos(2πnT) → X(ω) = π(δ(ω − ωo) + δ(ω + ωo)), for ω  ∈  [ − π, π]
The DTFT of a sampled signal is periodic with 2π.</p>

DTFT of a Cosine Sampled Above the Nyquist Rate

For our original pure frequency, let’s choose the E below middle C. The E occurs at 330H</em>z.


x(t) = cos(2π * 330t)

Now let’s sample this pure cosine at a frequency above the Nyquist Rate. The Nyquist Rate is  fs = 2 * fmax = 2 * (330Hz) = 660Hz. Let’s sample at 990Hz. Back to ECE438, Fall 2014

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang