Line 6: Line 6:
  
 
<center><font size= 10>
 
<center><font size= 10>
TITLE OF YOUR SLECTURE
+
Topic 3:Fourier transform of "rep" and "comb"
 
</font size>
 
</font size>
  
A [https://www.projectrhea.org/learning/slectures.php slecture] by [[ECE]] student JOE BLO
+
A [https://www.projectrhea.org/learning/slectures.php slecture] by [[ECE]] student Youqin Liu
  
 
Partly based on the [[2014_Fall_ECE_438_Boutin|ECE438 Fall 2014 lecture]] material of [[user:mboutin|Prof. Mireille Boutin]].  
 
Partly based on the [[2014_Fall_ECE_438_Boutin|ECE438 Fall 2014 lecture]] material of [[user:mboutin|Prof. Mireille Boutin]].  
Line 19: Line 19:
 
   
 
   
 
<font size= 5>
 
<font size= 5>
'''1.Introduction: In my selecture, I am going to introduce the definition, the Fourier Transformation and the relationship of Comb function and Rep function.
+
'''1.INTRODUCTION:  
  
2.THEORY:'''  
+
In my selecture, I am going to introduce the definition, the Fourier Transformation and the relationship of Comb function and Rep function.
 +
 
 +
'''2.THEORY:'''  
 
</font size>
 
</font size>
  
 
<font size= 3>(1)According to the definition of the comb function: </font size>
 
<font size= 3>(1)According to the definition of the comb function: </font size>
 
<math>comb_T\big(X(t)\big)= x(t)\cdot\ P_T(t)</math>  
 
<math>comb_T\big(X(t)\big)= x(t)\cdot\ P_T(t)</math>  
 +
  
 
<font size= 3> where</font size> <math>P_T(t)= \sum_{n=-\infty}^\infty \delta(t-nT)</math>
 
<font size= 3> where</font size> <math>P_T(t)= \sum_{n=-\infty}^\infty \delta(t-nT)</math>
 +
  
 
<font size= 3>Do the Fourier Transform to the function:</font size>
 
<font size= 3>Do the Fourier Transform to the function:</font size>
 +
  
 
<math>F\bigg(comb_T\big(x(t)\big)\bigg) = F\big(x(t)\cdot P_T(t)\big)</math>
 
<math>F\bigg(comb_T\big(x(t)\big)\bigg) = F\big(x(t)\cdot P_T(t)\big)</math>
 +
  
 
<font size= 3>
 
<font size= 3>
Line 63: Line 69:
 
    
 
    
 
                     <math>=\frac{1}{T}rep_{1/T}X(f)</math>
 
                     <math>=\frac{1}{T}rep_{1/T}X(f)</math>
 +
  
 
<font size= 3>(2)According to the definition of Rep function:</font size>
 
<font size= 3>(2)According to the definition of Rep function:</font size>
 +
  
 
<math>rep_T\big(x(t)\big):= x(t)*P_T(t)</math>
 
<math>rep_T\big(x(t)\big):= x(t)*P_T(t)</math>
  
<math>=x(t)*\sum_{n=-\infty}^\infty \delta(t-nT)</math>
+
            <math>=x(t)*\sum_{n=-\infty}^\infty \delta(t-nT)</math>
  
  
<font size= 3>So, </font size><math>F\bigg(rep_T\big(x(t)\big)\bigg)=F\bigg(x(t)*\sum_{n=-\infty}^\infty \delta(t-nT)\bigg)</math>
+
<font size= 4>So, </font size><math>F\bigg(rep_T\big(x(t)\big)\bigg)=F\bigg(x(t)*\sum_{n=-\infty}^\infty \delta(t-nT)\bigg)</math>
 +
 
 +
 
 +
<font size= 3>[https://engineering.purdue.edu/~bouman/ece637/notes/pdf/RepComb.pdf (3)Graph of the relationship between comb and rep function]</font size>
  
  
 
<font size= 3>Use the impluse-train we get previously, according to the conclusion we get from Fourier Transformation of it, we know:</font size>
 
<font size= 3>Use the impluse-train we get previously, according to the conclusion we get from Fourier Transformation of it, we know:</font size>
  
<math>F\big(P_T(t)\big)=\frac{1}{T}P_{1/T}(f)</math>
+
    <math>F\big(P_T(t)\big)=\frac{1}{T}P_{1/T}(f)</math>
  
 
<font size= 3>So, </font size> <math>F\bigg(rep_T\big(x(t)\big)\bigg)=x(f)\cdot\frac{1}{T}P_{1/T}(f)</math>
 
<font size= 3>So, </font size> <math>F\bigg(rep_T\big(x(t)\big)\bigg)=x(f)\cdot\frac{1}{T}P_{1/T}(f)</math>
  
  
<math>=\frac{1}{T}x(f)\cdot P_{1/T}(f)</math>  
+
                    <math>=\frac{1}{T}x(f)\cdot P_{1/T}(f)</math>  
 
+
  
  

Revision as of 19:28, 30 September 2014


Topic 3:Fourier transform of "rep" and "comb"

A slecture by ECE student Youqin Liu

Partly based on the ECE438 Fall 2014 lecture material of Prof. Mireille Boutin.



ECE438 SELECTURE


1.INTRODUCTION:

In my selecture, I am going to introduce the definition, the Fourier Transformation and the relationship of Comb function and Rep function.

2.THEORY:

(1)According to the definition of the comb function: $ comb_T\big(X(t)\big)= x(t)\cdot\ P_T(t) $


where $ P_T(t)= \sum_{n=-\infty}^\infty \delta(t-nT) $


Do the Fourier Transform to the function:


$ F\bigg(comb_T\big(x(t)\big)\bigg) = F\big(x(t)\cdot P_T(t)\big) $


According to the property of Fourier Transformation, the multiplication in the time domain is equal to the convolution in the frequency domain.

$ F\bigg(comb_T\big(x(t)\big)\bigg) = F\big(x(t)\big)* F\big(P_T(t)\big) $

                 $ =x(f)*F\big(P_T(t)\big) $

Because $ P_T(t)= \sum_{n=-\infty}^\infty \delta(t-nT) $ is a periodic function , so we can expand it to Fourier series.


$ P_T(t)\sum_{n=-\infty}^\infty F_n e^{jn\cdot 2\pi t/T} $


$ \Rightarrow F_n = \frac{1}{T}\int\limits_{-T/2}^{T/2}P_T(t)e^{jn\cdot 2\pi t/T}dt $

      $ =\frac{1}{T} $

So, $ P_T(t) = \frac{1}{T}\sum_{n=-\infty}^\infty F_n e^{jn\cdot 2\pi t/T} $

         $ =\sum_{n=-\infty}^\infty \frac{1}{T} F(e^{jn\cdot 2\pi t/T})  $
         $ =\sum_{n=-\infty}^\infty \frac{1}{T} \delta(f-\frac{n}{T}) $
         $ = \frac{1}{T}P_{1/T}(f) $

So, $ F\bigg(comb_T\big(x(t)\big)\bigg)=X(f)*\frac{1}{T}P_{1/T}(f) $

                    $ =\frac{1}{T}X(f)*P_{1/T}(f) $
  
                    $ =\frac{1}{T}rep_{1/T}X(f) $


(2)According to the definition of Rep function:


$ rep_T\big(x(t)\big):= x(t)*P_T(t) $

            $ =x(t)*\sum_{n=-\infty}^\infty \delta(t-nT) $


So, $ F\bigg(rep_T\big(x(t)\big)\bigg)=F\bigg(x(t)*\sum_{n=-\infty}^\infty \delta(t-nT)\bigg) $


(3)Graph of the relationship between comb and rep function


Use the impluse-train we get previously, according to the conclusion we get from Fourier Transformation of it, we know:

   $ F\big(P_T(t)\big)=\frac{1}{T}P_{1/T}(f) $

So, $ F\bigg(rep_T\big(x(t)\big)\bigg)=x(f)\cdot\frac{1}{T}P_{1/T}(f) $


                   $ =\frac{1}{T}x(f)\cdot P_{1/T}(f) $ 





(create a question page and put a link below)

Questions and comments

If you have any questions, comments, etc. please post them on this page.


Back to ECE438, Fall 2014

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett