Line 14: | Line 14: | ||
<math>\sin{\theta}=\frac{e^{j\theta}-e^{-j\theta}}{2j}</math> | <math>\sin{\theta}=\frac{e^{j\theta}-e^{-j\theta}}{2j}</math> | ||
+ | |||
+ | <math>|e^{j\theta}|=1</math> | ||
+ | |||
+ | |||
+ | == Energy == | ||
+ | |||
+ | ==== Discrete ==== | ||
+ | |||
+ | |||
+ | ==== Continuous ==== | ||
+ | |||
+ | |||
+ | == Power == | ||
+ | |||
+ | ==== Discrete ==== | ||
+ | |||
+ | |||
+ | ==== Continuous ==== | ||
+ | |||
+ | |||
+ | == Geometric Series == |
Revision as of 18:14, 9 September 2008
Contents
Phasors
$ x(t)=Ae^{j\theta+\phi} $
Where A is the radius of the phasor and $ \phi $ if the offset.
Useful Phasors Facts
$ e^{j\theta} = \cos{\theta}+j\sin{\theta} $
$ Ae^{j[\theta+\phi]}=Ae^{j\theta}e^{j\phi} $
$ \cos{\theta}=\frac{e^{j\theta}+e^{-j\theta}}{2} $
$ \sin{\theta}=\frac{e^{j\theta}-e^{-j\theta}}{2j} $
$ |e^{j\theta}|=1 $