Line 12: Line 12:
 
*Write comment/question here
 
*Write comment/question here
  
[Reviewd by Jieun Kim]
 
  
 
This slecture is nicely organized from introduction to decision making based on Parzen windows.
 
This slecture is nicely organized from introduction to decision making based on Parzen windows.
Line 25: Line 24:
 
If you would like to make the slecture even better, my suggestions is some graphs verifying the effects of smaller h or larger training data sets on  density estimation and decision making based on Parzen windows method.
 
If you would like to make the slecture even better, my suggestions is some graphs verifying the effects of smaller h or larger training data sets on  density estimation and decision making based on Parzen windows method.
  
But, overall, this slecture is excellent source to understand basic concepts of Parzen windows.
+
But, overall, this slecture is excellent source to understand basic concepts of Parzen windows.           [Reviewd by Jieun Kim]
  
 
**answer here
 
**answer here
 
----
 
----
 
[[ Parzen Windows | Back to Parzen Windows]]
 
[[ Parzen Windows | Back to Parzen Windows]]

Revision as of 17:31, 4 May 2014

Comments for Parzen Windows

A slecture by Abdullah Alshaibani


Please leave me comment below if you have any questions, if you notice any errors or if you would like to discuss a topic further.




  • Write comment/question here


This slecture is nicely organized from introduction to decision making based on Parzen windows. The slecture contains some important points from the class along with figures to help us understand better about window functions.

I have just a little suggestions about your slecture.

It was not very clear how $ h_j \longrightarrow0 $ results in$ \frac{1}{V_j} \phi(\frac{x_l - x_0}{h_j}) = \delta_j(x_j - x_0) \longrightarrow \delta(x - x_0) $.

In addition, it would have been better if there was appropriate labels for each figure (x-axis was not very clear). Because the idea was on n dimensional while figures were 2D, figures were a little confusing.

If you would like to make the slecture even better, my suggestions is some graphs verifying the effects of smaller h or larger training data sets on density estimation and decision making based on Parzen windows method.

But, overall, this slecture is excellent source to understand basic concepts of Parzen windows. [Reviewd by Jieun Kim]

    • answer here

Back to Parzen Windows

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009