Line 1: | Line 1: | ||
==Hypothesis Testing== | ==Hypothesis Testing== | ||
− | '''模式识别''' 的目标是将新观察的特征向量进行分类。为了进行分类的决定,需要通过魔钟'''判决规则'''。在 '''统计学模式识别''' 一般假设特征向量是个随机变量“X”,又有个概率密度函数或者概率质量函数,并且此函数依赖其分类。如下假设有两个类型:(<math>\omega_1,\omega_2</math>), 以便写公式也不失一般性。如此X的概率密度或质量函数是<math>P(X|\omega_i)</math> (如下称pdf)。每个类型的'''先验概率'''写成<math>P(\omega_i)</math>。 | + | '''模式识别''' 的目标是将新观察的特征向量进行分类。为了进行分类的决定,需要通过魔钟'''判决规则(decision rule)'''。在 '''统计学模式识别''' 一般假设特征向量是个随机变量“X”,又有个概率密度函数或者概率质量函数,并且此函数依赖其分类。如下假设有两个类型:(<math>\omega_1,\omega_2</math>), 以便写公式也不失一般性。如此X的概率密度或质量函数是<math>P(X|\omega_i)</math> (如下称pdf)。每个类型的'''先验概率'''写成<math>P(\omega_i)</math>。 |
统计学的主要部分之一是'''假设检验'''。下面描述假设检验在统计学模式识别的眼神。 | 统计学的主要部分之一是'''假设检验'''。下面描述假设检验在统计学模式识别的眼神。 | ||
==贝叶斯(Bayes)判决规则== | ==贝叶斯(Bayes)判决规则== | ||
− | 将<math>g_i(X)</math> | + | 将<math>g_i(X)</math> 是<math>\omega_i</math>的'''后验概率(posterior probability)'''。选<math>\omega_1</math>或<math>\omega_2</math>的判决规则为: 如果<math>g_1(X) > g_2(X)</math>,就选<math>\omega_1</math>, 不然选<math>\omega_2</math>。据贝斯定理, 判决规则能以 '''似然比(likelihood ratio)'''<math>l(X)</math> 表示: |
− | + | ||
− | + | ||
− | + | ||
<math>\begin{align} | <math>\begin{align} | ||
Line 19: | Line 16: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
− | + | k 是个常数,而且由于 <math> P(\omega_2) = 1 - P(\omega_1) </math>, k 可以看待是先验概率的比值(odds) 。为了评估判决规则的效果,需要计算錯誤的概率。假如<math> r(X) = min[g_1(X), g_2(X)] </math>。'''贝叶斯错误(Bayes error)'''定义为: | |
− | k | + | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
<math> | <math> | ||
\begin{align*} | \begin{align*} | ||
Line 34: | Line 25: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
− | 以上的<math>R_i <\math> 定义为decision rule 决定选 <math> \omega_i < | + | 以上的<math>R_i <\math> 定义为decision rule 决定选 <math> \omega_i </math>的领域,然后 <math>\epsilon_i</math> 是<math>L_i<\math>选错的概率。 |
Neyman-Pearson Test | Neyman-Pearson Test | ||
− | 如果你曾经上过入门的统计学课,你大概能想起传统的 | + | 如果你曾经上过入门的统计学课,你大概能想起传统的 '''假设检验'''. 如下为例子: |
一位人类学研究生认为他所观察的两种部落有不同的各自高度。把<math>\mu_A <\math> 和 <math>\mu_B <\math>定义为 部落A和部落B的人均各自高度,所以等于说<math> \mu_A - \mu_B \neq 0 <\math>。为了检验他的假设,他就从不哦啰A和部落B随机性地选出了N个人的样本,然后两侧各人的各自高度,最后算了样本均值<math>\bar{X_A},\bar{X_B}<\math>和样本标准差<math>S_A^2,S_B^2</math>。然后用如下的假设检验. | 一位人类学研究生认为他所观察的两种部落有不同的各自高度。把<math>\mu_A <\math> 和 <math>\mu_B <\math>定义为 部落A和部落B的人均各自高度,所以等于说<math> \mu_A - \mu_B \neq 0 <\math>。为了检验他的假设,他就从不哦啰A和部落B随机性地选出了N个人的样本,然后两侧各人的各自高度,最后算了样本均值<math>\bar{X_A},\bar{X_B}<\math>和样本标准差<math>S_A^2,S_B^2</math>。然后用如下的假设检验. | ||
零假设 (H0): <math> \mu_A - \mu_B = 0 <\math> | 零假设 (H0): <math> \mu_A - \mu_B = 0 <\math> |
Revision as of 16:50, 1 May 2014
Hypothesis Testing
模式识别 的目标是将新观察的特征向量进行分类。为了进行分类的决定,需要通过魔钟判决规则(decision rule)。在 统计学模式识别 一般假设特征向量是个随机变量“X”,又有个概率密度函数或者概率质量函数,并且此函数依赖其分类。如下假设有两个类型:($ \omega_1,\omega_2 $), 以便写公式也不失一般性。如此X的概率密度或质量函数是$ P(X|\omega_i) $ (如下称pdf)。每个类型的先验概率写成$ P(\omega_i) $。
统计学的主要部分之一是假设检验。下面描述假设检验在统计学模式识别的眼神。
贝叶斯(Bayes)判决规则
将$ g_i(X) $ 是$ \omega_i $的后验概率(posterior probability)。选$ \omega_1 $或$ \omega_2 $的判决规则为: 如果$ g_1(X) > g_2(X) $,就选$ \omega_1 $, 不然选$ \omega_2 $。据贝斯定理, 判决规则能以 似然比(likelihood ratio)$ l(X) $ 表示:
$ \begin{align} & g_1(X) > g_2(X) \\ \Rightarrow & P(\omega_1|X) > P(\omega_2|X) \\ \Rightarrow & \frac{P(X|\omega_1)P(\omega_1)}{P(X)} > \frac{P(X|\omega_2)P(\omega_2)}{P(X)} \\ \Rightarrow & P(X|\omega_1)P(\omega_1) > P(X|\omega_2)P(\omega_2) \\ \Rightarrow & l(X)=\frac{P(X|\omega_1)}{P(X|\omega_2)} > \frac{P(\omega_2)}{P(\omega_1)} = k \end{align} $ k 是个常数,而且由于 $ P(\omega_2) = 1 - P(\omega_1) $, k 可以看待是先验概率的比值(odds) 。为了评估判决规则的效果,需要计算錯誤的概率。假如$ r(X) = min[g_1(X), g_2(X)] $。贝叶斯错误(Bayes error)定义为: $ \begin{align*} \\ \epsilon & = E(r(X)) = \int min(P(\omega_1)P(X|\omega_1), P(\omega_2)P(X|\omega_2))dX \\ &= P(\omega_1) \int_{R_2}P(X|\omega_1)dX + P(\omega_2) \int_{R_1} P(X|\omega_2)dX \\ &= P(\omega_1)\epsilon_1 + P(\omega_2)\epsilon_2 \end{align} $ 以上的$ R_i <\math> 定义为decision rule 决定选 <math> \omega_i $的领域,然后 $ \epsilon_i $ 是$ L_i<\math>选错的概率。 Neyman-Pearson Test 如果你曾经上过入门的统计学课,你大概能想起传统的 '''假设检验'''. 如下为例子: 一位人类学研究生认为他所观察的两种部落有不同的各自高度。把<math>\mu_A <\math> 和 <math>\mu_B <\math>定义为 部落A和部落B的人均各自高度,所以等于说<math> \mu_A - \mu_B \neq 0 <\math>。为了检验他的假设,他就从不哦啰A和部落B随机性地选出了N个人的样本,然后两侧各人的各自高度,最后算了样本均值<math>\bar{X_A},\bar{X_B}<\math>和样本标准差<math>S_A^2,S_B^2 $。然后用如下的假设检验. 零假设 (H0): $ \mu_A - \mu_B = 0 <\math> 对立假设(Ha): <math> \mu_A - \mu_B \neq 0 <\math> Test statistic: <math> T = \frac{\bar{X}_A - \bar{X}_B}{\sqrt{(S^2_A+S^2_B)/N}} $. 中心极限定理就让我们假设$ T \sim N(0, 1) $. Decision Rule: 若$ T < Z_{\frac{\alpha}{2}} <\math> 或则 <math> T 》 Z_{\frac{1 - \alpha}{2}} <\math>,则选H0不然选Ha. 如上的<math>\alpha = P(判决规则让选Ha|H0正确)=P('''第一型錯誤''') $。反而第二型錯誤是判决规则让选H0|Ha正确.一般在这种假设检验,控制第一型錯誤的概率是最有限考虑。