(New page: <br> <center><font size="4"></font> <font size="4">'''Principle Component Analysis (PCA) tutorial''' <br>)
 
Line 1: Line 1:
 
<br>  
 
<br>  
 
<center><font size="4"></font>  
 
<center><font size="4"></font>  
<font size="4">'''Principle Component Analysis (PCA) tutorial''' <br>
+
<font size="4">'''Bayes rule in practice''' <br> </font> <font size="2">A [https://www.projectrhea.org/learning/slectures.php slecture] by Lu Wang </font>
 +
 
 +
<font size="2">(partially based on Prof. [https://engineering.purdue.edu/~mboutin/ Mireille Boutin's] ECE [[ECE662|662]] lecture) </font>
 +
</center>
 +
----
 +
 
 +
----
 +
 
 +
== 1. Bayes rule for Gaussian data  ==
 +
 
 +
&nbsp; &nbsp; Given data x ∈ R<span class="texhtml"><sup>''d''</sup></span> and N categories {w<span class="texhtml"><sub>''i''</sub></span>}, i=1,2,…,N, we decide which category the data corresponds to by computing the probability of the N events. We’ll pick the category with the largest probability. Mathematically, this can be interpreted as:
 +
 
 +
<br>  
 +
<center><math>\max_{w_{i}} \rho \left(w_{i}|x\right)</math><br></center>
 +
<br> According to Bayes rule:
 +
 
 +
 
 +
<center><math>\max_{w_{i}} \rho \left(w_{i}|x\right) = \max_{w_{i}} \rho \left(x|w_{i}\right)Prob(w_{i})</math><br></center>
 +
 
 +
 
 +
In our case, the data is distributed as Gaussian. So we have,

Revision as of 10:46, 21 April 2014


Bayes rule in practice
A slecture by Lu Wang

(partially based on Prof. Mireille Boutin's ECE 662 lecture)



1. Bayes rule for Gaussian data

    Given data x ∈ Rd and N categories {wi}, i=1,2,…,N, we decide which category the data corresponds to by computing the probability of the N events. We’ll pick the category with the largest probability. Mathematically, this can be interpreted as:


$ \max_{w_{i}} \rho \left(w_{i}|x\right) $


According to Bayes rule:


$ \max_{w_{i}} \rho \left(w_{i}|x\right) = \max_{w_{i}} \rho \left(x|w_{i}\right)Prob(w_{i}) $


In our case, the data is distributed as Gaussian. So we have,

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett