Line 236: Line 236:
  
 
'''(c)''' If yes, what is the distribution of the random variable it converges to?
 
'''(c)''' If yes, what is the distribution of the random variable it converges to?
 +
 +
----

Revision as of 14:46, 27 January 2014


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2012



Jump to Problem 2,3


Problem 3

$ \color{blue}\text{Solution 1:} $

$ f_{X}(x) = 1_{[0,1]}(x) = \left\{ \begin{array}{ll} 1 & \quad 0 \leq x \leq 1 \\ 0 & \quad elsewhere \end{array} \right. $

$ F_{X}(x) = \int_0^x f_{X}(\alpha)d\alpha = \int_0^x d\alpha = x $

$ Y_{n} = min\{X_{1}, ...., X_{n}\} $

(a)

$ \; \; \; F_{Y_{n}}(y) = P(\{Y \leq y\}) $
$ = P(\{min\{X_{1}, ..., X_{n}\} \leq y\}) $

$ = 1 - P(\{X_{1} > y\}, ...., \{X_{n} > y\}) $

$ = 1 - P(\{X_{1} > y\})P(\{X_{2} > y\})...P(\{X_{n} > y\}) $

$ = 1 - (1-y)^{n} $


$ f_{Y_{n}}(y) = \frac{dF_{Y}(y)}{dy} = n(1-y)^{n-1} 1_{[0, 1]}(y) $


(b)

Yes. It converges in probability.

A random variable converges in probability if

$ P\{\mid Y_{n} - a \mid > \varepsilon\} \rightarrow 0 \;\; as \; n \rightarrow \inf \;\; for \;any\; \varepsilon > 0 $

Then the random variable is said to converge to a.

Consider

$ P\{\mid Y_{n}-0 \mid > \varepsilon\} = P\{Y_{n}>\varepsilon\} $

$ = 1 - P\{Y_{n} \leq \varepsilon\} = 1 - [1-(1-\varepsilon)^n] = (1-\varepsilon)^n $


$ As\; n\rightarrow \inf \; \; \; P\{\mid Y_{n}-0 \mid > \varepsilon\} = 0 $

Since $ 0 < (1-\varepsilon) <1 $

Thus $ Y_{n} \rightarrow 0 $


(c)

From the solution to (a), we have

$ F_{Y_{n}}(y) = \left\{ \begin{array}{ll} 1 - (1-y)^{n} & \quad 0 < y \leq 1 \\ 1 & \quad y > 1 \end{array} \right. $

It converges in distribution since:
$ convergence(probability) \Rightarrow convergence(distribution) $


To find the convergence of CDF,
$ \lim_{n \to \infty} F_{Y_{n}}(y) = \lim_{n \to \infty} 1 - (1-y)^{n} = \left\{ \begin{array}{ll} 0 & \quad y \leq 0 \\ 1 & \quad y > 0 \end{array} \right. $

$ {\color{red} \text{*For part (a), there is a typo for the following equation}} $

$ {\color{red} F_{Y_{n}}(y) = P(\{Y \leq y\}) = P(min\{X_{1}, \dots, X_{n}\} \leq y) \text{, and should be changed to} } $

$ {\color{red} F_{Y_{n}}(y) = P(\{Y_{n} \leq y\}) = P(min\{X_{1}, \dots, X_{n}\} \leq y) } $

$ {\color{red} \text{*For part (b), I would like to add some additional parts to the following equation for better understanding}} $

$ {\color{red} n\rightarrow \inf \; \; \; P\{\mid Y_{n}-0 \mid > \varepsilon\} = 0} $

$ {\color{red} \text{Since } 0 < (1-\varepsilon) <1} $

$ {\color{red} \text{to }} $

$ {\color{red}\text{Since } 0 < (1-\varepsilon) <1 \text{, as } n\rightarrow \infty \Rightarrow \lim_{n \to \infty}(1-\varepsilon)^n = 0 \; \; \; \therefore \lim_{n \to \infty}P\{\mid Y_{n}-0 \mid > \varepsilon\} = \lim_{n \to \infty} (1-\varepsilon)^n = 0} $

$ {\color{red} \text{*For part (c), the CDF of the random variable } \mathbf{Y}_n \text{ is incorrect. It should be}} $

$ {\color{red} F_{Y_n}\left(y\right)=\begin{cases} \begin{array}{lll} 0, y <0 \\ 1-(1-y)^n, 0 \leq y \leq 1 \\ 1, y>1 \end{array}\end{cases} } $

$ {\color{red} \text{Therefore, it should be modified as follow}} $

$ {\color{red} \text{As } n \to \infty \text{,} \,\, F_{Y_n}(y) \to F_{Y}(y)=\begin{cases} \begin{array}{lll} 0, y <0 \\ 1, y \geq 0 \end{array}\end{cases} } $

$ \color{blue}\text{Solution 2:} $

(a)
Since $ \mathbf{Y}_{n} = min \,\{{ \mathbf{X}_1, \mathbf{X}_2, \dots \mathbf{X}_n} \} $, and $ \{{ \mathbf{X}_1, \mathbf{X}_2, \dots \mathbf{X}_n} \} $ are i.i.d R.V.
We can have the CDF of $ \mathbf{Y}_{n} $
$ P(\mathbf{Y}_{n} \leq y) = P(\,\{{ \mathbf{X}_1, \mathbf{X}_2, \dots \mathbf{X}_n} \} \leq y) $
$ = 1-P(\,\{{ \mathbf{X}_1, \mathbf{X}_2, \dots \mathbf{X}_n} \} > y) $
$ = 1-P(\mathbf{X}_1 > y)P(\mathbf{X}_2 > y) \dots P(\mathbf{X}_n > y) $
$ = 1-(1-F_{X_1}(y))(1-F_{X_2}(y)) \dots (1-F_{X_n}(y))=1-(1-F_{X_1}(y))^n $

Since $ \mathbf{Y}_{n} $ is also uniform distributed on the interval [0,1]
When $ Y_n = y < 0 $, $ P(\{\mathbf{Y}_{n}<0 \}) =0 $ since $ F_{X_1}(y) =0 $
When $ Y_n = y > 1 $, $ P(\{\mathbf{Y}_{n}>1 \}) =1 $ since $ F_{X_1}(y) =1 $
When $ 0 \leq Y_n = y \leq 1 $

$ F_{X_1}(y)= \int_{0}^{y}f_{X_1}(x)\,dx=\int_{0}^{y}\, 1 \, dx = y $

Thus, the CDF of $ \mathbf{Y}_{n} $ is the following
$ F_{Y_n}\left(y\right)=\begin{cases} \begin{array}{lll} 0, y <0 \\ 1-(1-y)^n, 0 \leq y \leq 1 \\ 1, y>1 \end{array}\end{cases} $
Thus, the pdf of $ \mathbf{Y}_{n} $ is
$ f_{Y_n}\left(y\right)=\begin{cases} \begin{array}{lll} n(1-y)^{n-1}, 0 \leq y \leq 1 \\ 0, \,\,\, \text{elsewhere} \end{array}\end{cases} $


(b)
Let $ \mu=E[Y_n] $ and $ \sigma^2=E(|Y_n-\mu|^2) $. By Chebyshev inequality, we have
$ P(|\mathbf{Y}_{n}-\mu| \geq \varepsilon) \leq \frac{\sigma^2}{\varepsilon^2} = \frac{E[|\mathbf{Y}_{n}-\mu|^2]}{\varepsilon^2} $
Now, we examine
$ E[|\mathbf{Y}_{n}-\mu|^2] = E[Y_n^2-2 \mu Y_n+\mu^2] = E[Y_n^2]-2\mu E[Y_n]+\mu^2=E[Y_n^2]-\mu^2. $

In problem (a), we have the pdf of $ Y_n $, we can find $ E[Y_n] $ and $ E[Y_n^2] $
$ E[Y_n] = \int_{0}^{1}y f_{Y_n}(y) \,dy = \int_{0}^{1} y n(1-y)^{n-1} \, dy = \frac{1}{n+1} $
$ E[Y_n^2] = \int_{0}^{1}y^2 f_{Y_n}(y) \,dy = \int_{0}^{1} y^2 n(1-y)^{n-1} \, dy = \frac{2}{n^2+3n+2} $
As $ n \to \infty $
$ \lim_{n \to \infty} E[|\mathbf{Y}_{n}-\mu|^2] = \lim_{n \to \infty} \left( E[Y_n^2]-(E[Y_n])^2 \right)= \lim_{n \to \infty}\left( \frac{2}{n^2+3n+2}- (\frac{1}{n+1})^2\right)=0 $
$ \Rightarrow P(|\mathbf{Y}_{n}-\mu| \geq \varepsilon) \leq \frac{E[|\mathbf{Y}_{n}-\mu|^2]}{\varepsilon^2} = 0 \,\,\text{as} \,n \to \infty $
Thus, the sequence $ Y_n $ converges in probability to $ \mu $ for any $ \varepsilon>0 $, and
$ \lim_{n \to \infty} \mu = \lim_{n \to \infty} E[Y_{n}] = \lim_{n \to \infty} \frac{1}{n+1} =0 $
$ \therefore P(|\mathbf{Y}_{n}-\mu| \geq \varepsilon) = P(|\mathbf{Y}_{n}-0| \geq \varepsilon) \to 0 \,\,\text{as} \,\, n \to \infty $

(c)
The CDF of $ Y_n $
$ F_{Y_n}\left(y\right)=\begin{cases} \begin{array}{lll} 0, y <0 \\ 1-(1-y)^n, 0 \leq y \leq 1 \\ 1, y>1 \end{array}\end{cases} $

As $ n \to \infty $
$ F_{Y_n}(y) \to F_{Y}(y)= \begin{cases} \begin{array}{lll} 0, \,\, y <0 \\ 1, \,\, y \geq 0 \end{array}\end{cases} $
where $ 1-(1-y)^n \to 1 $ as $ n \to \infty $, when $ 0 <y<1 $
Because $ 0 < (1-y) <1 $, $ (1-y)^n \to 0 $, when $ n \to \infty $
$ F_{Y}(y)= \begin{cases} \begin{array}{lll} 0, \,\, y <0 \\ 1, \,\, y \geq 0 \end{array}\end{cases} $
where this CDF is a step function.

Thus, the sequence of random variable $ {Y_n} $ with cumulative distribution function $ F_{Y_n}(y) $ converges in distribution to the random variable $ Y $ with cumulative distribution function $ F_{Y}(y) $, which is a step function.

Related Problem


Let $ X_{n} $ be a sequence of independent, identical distributed random variables, each has Cauchy pdf
$ f(x)=\frac{1}{\pi (1+x^2)} \text{, } -\infty < x < \infty $

Let $ Y_{n} $ a new random variable defined by
$ Y_{n} = \frac{1}{n} \sum_{i=1}^{n} \, X_{i} $

(a) Find the pdf of the sequence $ Y_n $, and describe how it depends on n.

(b) Does the sequence $ \mathbf{Y}_{n} $ converge in distribution?

(c) If yes, what is the distribution of the random variable it converges to?


Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal