Line 7: Line 7:
 
1. <math>f(x,y)=\frac{ sin(\pi x)}{\pi x} \frac{ sin(\pi y)}{\pi y} </math>
 
1. <math>f(x,y)=\frac{ sin(\pi x)}{\pi x} \frac{ sin(\pi y)}{\pi y} </math>
 
   
 
   
guess:  
+
guess: <math>F(u,v) = rect(u) rect(v)</math>
<math>F(U,V) = rect(U) rect(V)</math>
+
prove:
 +
<math> F^{-1}(u,v) =

Revision as of 06:58, 13 December 2013

Prove of the CSFT of the signals

Yuanjun Wang

Below are CSFT of six signals. The general way we solve CSFT questions is to guess its Fourier Transform, then prove it by taking the inverse F.T. of the signals.

1. $ f(x,y)=\frac{ sin(\pi x)}{\pi x} \frac{ sin(\pi y)}{\pi y} $

guess: $ F(u,v) = rect(u) rect(v) $ prove: $ F^{-1}(u,v) = $

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach