Line 119: | Line 119: | ||
Does the nth order cdf/pdf/pmf depend on where t=0 is? Do <math>\mu_X</math>(t), R<math>_{XX}</math>(t<math>_1</math>,t<math>_2</math>), C<math>_{XX}</math>(t<math>_1</math>,t<math>_2</math>)? | Does the nth order cdf/pdf/pmf depend on where t=0 is? Do <math>\mu_X</math>(t), R<math>_{XX}</math>(t<math>_1</math>,t<math>_2</math>), C<math>_{XX}</math>(t<math>_1</math>,t<math>_2</math>)? | ||
− | ''' | + | '''Definition''' <math>\qquad</math> a random process X(t) is '''strict sense stationary (SSS)''', or simply '''stationary''', if <br/> |
<center><math>F_{X(t_1)...X(t_n)}(x_1,...,x_n)=F_{X(t_1+\alpha)...X(t_n+\alpha)}(x_1,...,x_n)</math><br/> | <center><math>F_{X(t_1)...X(t_n)}(x_1,...,x_n)=F_{X(t_1+\alpha)...X(t_n+\alpha)}(x_1,...,x_n)</math><br/> | ||
<math>\forall\alpha\in\mathbb R,\;n\in\mathbb N,\;t_1,...,t_n\in\mathbb R</math></center> | <math>\forall\alpha\in\mathbb R,\;n\in\mathbb N,\;t_1,...,t_n\in\mathbb R</math></center> | ||
+ | |||
+ | Note that if X(t) is SSS, then <br/> | ||
+ | <center><math>f_{X(t)}(x)=f_{X(t+\alpha)}(x) = f_X(x)\qquad\forall t,\alpha,x\in\mathbb R</math></center> | ||
+ | for some pdf f<math>_X</math>(x) and <br/> | ||
+ | <center><math>f_{X(t_1)X(t_2)}(x_1,x_2)=f_{X(t_1+\alpha)X(t_2+\alpha)}(x_1,x_2)=f_{X_1X_2}(x_1,x_2;\tau)</math></center> | ||
+ | where <math>\tau=t_2+\alpha-(t_1+\alpha)=t_2-t_1</math> and f<math>_{X1X2}</math> is a second order joint pdf that depends on <math>\tau</math>. | ||
+ | |||
+ | |||
+ | '''Wide Sense Stationary Random Processes'''<br/> | ||
+ | A random process X(t) is wide sense stationary (WSS) if it satisfies | ||
+ | # E[X(t)] = <math>\mu_X</math>(t) = <math>\mu_X</math> ∀t, where <math>\mu_X</math> ∈ '''R''' does not depend on t. | ||
+ | # R<math>_{XX}</math>(t<math>_1</math>,t<math>_2</math>) = R<math>_X</math>(t<math>_2</math> - t<math>_1</math>) = R<math>_X</math>(<math>\tau</math>) where <math>\tau</math> = t<math>_2</math> - t<math>_1</math>, and R<math>_X</math> is a function mapping '''R''' to '''R'''. | ||
+ | |||
+ | Interesting properties: | ||
+ | * If X(t) is WSS then | ||
+ | **E[X<math>^2</math>(t)] = R<math>_{XX}</math>(t,t) = R<math>_X</math>(0) (so R<math>_X</math>(0) ≥ 0). | ||
+ | **C<math>_{XX}</math>(t<math>_1</math>,t<math>_2</math>) = R<math>_{XX}</math>(t<math>_1</math>,t<math>_2</math>) - <math>\mu_X</math>(t<math>_1</math>)<math>\mu_X</math>(t<math>_2</math>), where <math>\tau</math> = t<math>_2</math> - t<math>_1</math>, and C<math>_X</math> is a function mapping '''R''' to '''R'''. | ||
+ | *if X(t) is SSS, then X(t) is WSS, but the converse is not true in general. | ||
+ | *If X(t) is Gaussian and WSS, then X(t) is SSS. | ||
+ | :'''Proof''' <math>\qquad</math> The random variables X(t<math>_1</math> + <math>\alpha</math>,...,X(t<math>_n</math> + <math>\alpha</math>have characteristic function <br/> | ||
+ | <center><math>\Phi_{X(t_1+\alpha)...X(t_n+\alpha)}(\omega_1,...,\omega_n) = e^{i\mu}</math></center> |
Revision as of 08:58, 1 December 2013
Random Variables and Signals
Topic 19: Stochastic Processes
Stochastic Processes
We have already seen discrete-time random processes, but we will now formalize the concept of random process, including both discrete-time and continuous time.
'Definition $ \qquad $ a stochastic process, or random process, defines on (S,F,P) is a family of random variables {X(t), t ∈ T} indexed by a set T.
Each waveform is referred to as a sample realization. Note that T can be uncountable, as shown above, or countable.
Note that
- X(t,$ \omega $) (or simply X(t)) is a random process.
- X(t$ _0 $,$ \omega $) is a random variable for fixed t$ _0 $.
- X(t,$ \omega_0 $) is a real-valued function of t for fixed $ \omega_0 $.
- X(t$ _0 $,$ \omega_0 $) is a real number for fixed t$ _0<math> and <math>\omega_0 $.
There are four types or random processes we will consider
- T ⊂ R uncountable, X(t) a discrete random variable for every t ∈ T is a continuous-time discrete random process.
- T ⊂ R uncountable, X(t) a continuous random variable for every t ∈ T is a continuous time continuous random process.
- T ⊂ R countable, X(t) a discrete random variable for every t ∈ T is a discrete-time discrete random process.
- T ⊂ R countable, X(t) a continuous random variable for every t ∈ T is a discrete-time continuous random process.
Example $ \qquad $ if T = N = {1,2,3,...}, then X(t) is a discrete time random process, usually written as X$ _1 $,X$ _2 $
Example $ \qquad $ a binary waveform with random transition times
Example $ \qquad $ A sinusoid with random frequency
where $ \Omega $ is a random variable.
Probabilistic Description of a Random Process
We can use joint pdfs of pmfs, but often we use the first and second order moments instead.
Definition $ \qquad $ The nth order cdf of X(t) is
and the nth order pdf is
Notation $ \qquad $ for n=1, we have
and for n= 2,
Definition $ \qquad $ The nth order pmf of a discrete random process is
It can be shown that if f$ _{X(t1)...X(tn)} $(x$ _1 $,...x$ _n $) is specified ∀t$ _1 $,...,t$ _n $; ∀n = 1,2,..., then X(t) is a valid random process consistent with a probability space (S,F,P). This result comes from the Kolmogorov existence theorem, which we will not cover.
Now consider the first and second order moments for a random process.
Definition $ \qquad $ The mean of a random process X(t) is
Definition $ \qquad $ The autocorrelation function of a random process X(t) is
Note: R$ _{XX} $(t$ _1 $,t$ _2 $) = R$ _{XX} $(t$ _2 $,t$ _1 $)
Definition $ \qquad $ The autocovariance function of a random process X(t) is
Important property of R$ _{XX} $ and C$ _{XX} $:
R$ _{XX} $ and C$ _{XX} $ are non-negative definite functions, i.e., ∀a$ _1 $,...,a$ _n $ ∈ R and t$ _1 $,...,t$ _n $ ∈ R, and ∀n ∈ N,
Proof $ \qquad $ See the proof of NND property of correlation matrix R$ _X $. Let R$ _{ij} $ = R$ _{XX} $(t$ _i $, t$ _j $).
Two important properties of random processes:
Definition $ \qquad $ A random process W(t) is called a white noise process if C$ _{WW} $(t$ _1 $,t$ _2 $) = 0 ∀t$ _1 $ ≠ t$ _2 $.
This means that ∀t$ _1 $ ≠ t$ _2 $, W(t$ _1 $) and W(t$ _2 $) are uncorrelated.
Definition $ \qquad $ A random process X(t) is called a Gaussian random process if X(t$ _1 $),...,X(t$ _n $) are jointly Gaussian random variables ∀t$ _1 $,...,t$ _n $ for any n ∈ N.
The nth order characteristic function of a Gaussian random process is given by
Stationarity
Intuitive idea: A random process is stationary (is some sense) if its probabilistic description (nth order cdf/pdf/pmf, or mean, autocorrelation, autocovariance functions) does not depend on the time origin.
Does the nth order cdf/pdf/pmf depend on where t=0 is? Do $ \mu_X $(t), R$ _{XX} $(t$ _1 $,t$ _2 $), C$ _{XX} $(t$ _1 $,t$ _2 $)?
Definition $ \qquad $ a random process X(t) is strict sense stationary (SSS), or simply stationary, if
$ \forall\alpha\in\mathbb R,\;n\in\mathbb N,\;t_1,...,t_n\in\mathbb R $
Note that if X(t) is SSS, then
for some pdf f$ _X $(x) and
where $ \tau=t_2+\alpha-(t_1+\alpha)=t_2-t_1 $ and f$ _{X1X2} $ is a second order joint pdf that depends on $ \tau $.
Wide Sense Stationary Random Processes
A random process X(t) is wide sense stationary (WSS) if it satisfies
- E[X(t)] = $ \mu_X $(t) = $ \mu_X $ ∀t, where $ \mu_X $ ∈ R does not depend on t.
- R$ _{XX} $(t$ _1 $,t$ _2 $) = R$ _X $(t$ _2 $ - t$ _1 $) = R$ _X $($ \tau $) where $ \tau $ = t$ _2 $ - t$ _1 $, and R$ _X $ is a function mapping R to R.
Interesting properties:
- If X(t) is WSS then
- E[X$ ^2 $(t)] = R$ _{XX} $(t,t) = R$ _X $(0) (so R$ _X $(0) ≥ 0).
- C$ _{XX} $(t$ _1 $,t$ _2 $) = R$ _{XX} $(t$ _1 $,t$ _2 $) - $ \mu_X $(t$ _1 $)$ \mu_X $(t$ _2 $), where $ \tau $ = t$ _2 $ - t$ _1 $, and C$ _X $ is a function mapping R to R.
- if X(t) is SSS, then X(t) is WSS, but the converse is not true in general.
- If X(t) is Gaussian and WSS, then X(t) is SSS.
- Proof $ \qquad $ The random variables X(t$ _1 $ + $ \alpha $,...,X(t$ _n $ + $ \alpha $have characteristic function