Line 10: Line 10:
  
 
         -Special p groups
 
         -Special p groups
        -Pro p-groups
+
      -Pro p-groups
        -Powerful p-groups
+
      -Powerful p-groups
  
 
Sylow Theorems -Application  
 
Sylow Theorems -Application  
Line 57: Line 57:
 
#Syl<sub>p</sub>(G)&nbsp;<sub></sub>
 
#Syl<sub>p</sub>(G)&nbsp;<sub></sub>
  
Regular p-groups:
+
<br>
  
'''Definitions'''
 
*Suppose p is a prime number. A p-group G
 
 
[[Category:MA453Fall2013Walther]]
 
[[Category:MA453Fall2013Walther]]

Revision as of 14:22, 29 November 2013

Mark Rosinski, markrosi@purdue.edu Joseph Lam, lam5@purdue.edu Beichen Xiao, xiaob@purdue.edu

Outline:

Origin -Creator -History of the Sylow Theorems/ p-groups P-Groups -Definition -Regular p-groups

               -Relationship to Abelian Groups

-Application -Frattini Subgroup

       -Special p groups
     -Pro p-groups
     -Powerful p-groups

Sylow Theorems -Application

                -Theorem 1

-Theorem 2 -Theorem 3

       -Importance of Lagrange Theory

I plan on deleting everything above this after we have completed the paper.  I planned on just using the outline as a guide. 

I've been using these websites: 

http://math.berkeley.edu/~sikimeti/SylowNotes.pdf

http://omega.albany.edu:8008/Symbols.html (this is Tex symbols)

The pdf emailed to you

http://www.ams.org/journals/bull/2001-38-03/S0273-0979-01-00909-0/S0273-0979-01-00909-0.pdf




P-groups

Definitions:

  • Let p be a prime p $ \in $ $ \mathbb{Z} $ such that $ \mathbb{Z} $≥0. A p-group is a group of order pn.
  • A subgroup of order pk for some k ≥ 1 is called a p-subgroup.
  • If |G| = pαm where p does not divide m, then a subgroup of order pα is called a Sylow p-subgroup of G.


Sylow's Theorems

Definitions:

Let G be a group of order pαm, where p is a prime, m≥1, and p does not divide m.  Then:

  1. Sylp(G) 


Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang