Line 10: Line 10:
  
 
         -Special p groups
 
         -Special p groups
              -Pro p-groups
+
          -Pro p-groups
              -Powerful p-groups
+
          -Powerful p-groups
  
 
Sylow Theorems -Application  
 
Sylow Theorems -Application  
Line 23: Line 23:
 
P-groups:  
 
P-groups:  
  
Definition: Let p be a prime p <math>\in</math> <math>\mathbb{Z}</math>.
+
'''Definitions:'''
 +
 
 +
*Let p be a prime p <math>\in</math> <math>\mathbb{Z}</math> such that <math>\mathbb{Z}</math>≥0. A p-group is a group of order p<sup>n</sup>.
 +
*A subgroup of order p<sup>k</sup> for some k ≥ 1 is called a p-subgroup.
 +
*If |G| = p<sup><span class="texhtml">α</span></sup>m where p does not divide m, then a subgroup of order p<sup><span class="texhtml">α</span></sup> is called a Sylow p-subgroup of G.<br>
  
 
[[Category:MA453Fall2013Walther]]
 
[[Category:MA453Fall2013Walther]]

Revision as of 14:00, 29 November 2013

Mark Rosinski, markrosi@purdue.edu Joseph Lam, lam5@purdue.edu Beichen Xiao, xiaob@purdue.edu

Outline:

Origin -Creator -History of the Sylow Theorems/ p-groups P-Groups -Definition -Regular p-groups

               -Relationship to Abelian Groups

-Application -Frattini Subgroup

       -Special p groups
         -Pro p-groups
         -Powerful p-groups

Sylow Theorems -Application

                -Theorem 1

-Theorem 2 -Theorem 3

       -Importance of Lagrange Theory

P-groups:

Definitions:

  • Let p be a prime p $ \in $ $ \mathbb{Z} $ such that $ \mathbb{Z} $≥0. A p-group is a group of order pn.
  • A subgroup of order pk for some k ≥ 1 is called a p-subgroup.
  • If |G| = pαm where p does not divide m, then a subgroup of order pα is called a Sylow p-subgroup of G.

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin