Line 1: | Line 1: | ||
− | Mark Rosinski, markrosi@purdue.edu | + | Mark Rosinski, markrosi@purdue.edu Joseph Lam, lam5@purdue.edu Beichen Xiao, xiaob@purdue.edu |
− | Joseph Lam, lam5@purdue.edu | + | |
− | Beichen Xiao, xiaob@purdue.edu | + | |
− | Outline: | + | Outline: |
+ | |||
+ | Origin -Creator -History of the Sylow Theorems/ p-groups P-Groups -Definition -Regular p-groups | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
-Relationship to Abelian Groups | -Relationship to Abelian Groups | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | -Application -Frattini Subgroup | ||
+ | -Special p groups | ||
+ | -Pro p-groups | ||
+ | -Powerful p-groups | ||
+ | Sylow Theorems -Application | ||
+ | -Theorem 1 | ||
+ | -Theorem 2 -Theorem 3 | ||
+ | -Importance of Lagrange Theory | ||
+ | P-groups: | ||
+ | Definition: Let p be a prime p <math>\in</math> <math>\mathbb{Z}</math>. | ||
− | + | [[Category:MA453Fall2013Walther]] |
Revision as of 13:38, 29 November 2013
Mark Rosinski, markrosi@purdue.edu Joseph Lam, lam5@purdue.edu Beichen Xiao, xiaob@purdue.edu
Outline:
Origin -Creator -History of the Sylow Theorems/ p-groups P-Groups -Definition -Regular p-groups
-Relationship to Abelian Groups
-Application -Frattini Subgroup
-Special p groups -Pro p-groups -Powerful p-groups
Sylow Theorems -Application
-Theorem 1
-Theorem 2 -Theorem 3
-Importance of Lagrange Theory
P-groups:
Definition: Let p be a prime p $ \in $ $ \mathbb{Z} $.