Line 1: Line 1:
Mark Rosinski, markrosi@purdue.edu
+
Mark Rosinski, markrosi@purdue.edu Joseph Lam, lam5@purdue.edu Beichen Xiao, xiaob@purdue.edu  
Joseph Lam, lam5@purdue.edu
+
Beichen Xiao, xiaob@purdue.edu
+
  
Outline:
+
Outline:  
 +
 
 +
Origin -Creator -History of the Sylow Theorems/ p-groups P-Groups -Definition -Regular p-groups
  
Origin
 
-Creator
 
-History of the Sylow Theorems/ p-groups
 
P-Groups
 
-Definition
 
-Regular p-groups
 
 
                 -Relationship to Abelian Groups
 
                 -Relationship to Abelian Groups
-Application
 
-Frattini Subgroup
 
        -Special p groups
 
                -Pro p-groups
 
                -Powerful p-groups
 
Sylow Theorems
 
-Application
 
                -Theorem 1
 
-Theorem 2
 
-Theorem 3
 
        -Importance of Lagrange Theory
 
 
 
 
 
 
 
  
 +
-Application -Frattini Subgroup
  
 +
        -Special p groups
 +
              -Pro p-groups
 +
              -Powerful p-groups
  
 +
Sylow Theorems -Application
  
 +
                -Theorem 1
  
 +
-Theorem 2 -Theorem 3
  
 +
        -Importance of Lagrange Theory
  
 +
P-groups:
  
 +
Definition: Let p be a prime p <math>\in</math> <math>\mathbb{Z}</math>. 
  
[[Category:MA453Fall2013Walther]]
+
[[Category:MA453Fall2013Walther]]

Revision as of 13:38, 29 November 2013

Mark Rosinski, markrosi@purdue.edu Joseph Lam, lam5@purdue.edu Beichen Xiao, xiaob@purdue.edu

Outline:

Origin -Creator -History of the Sylow Theorems/ p-groups P-Groups -Definition -Regular p-groups

               -Relationship to Abelian Groups

-Application -Frattini Subgroup

       -Special p groups
             -Pro p-groups
             -Powerful p-groups

Sylow Theorems -Application

                -Theorem 1

-Theorem 2 -Theorem 3

       -Importance of Lagrange Theory

P-groups:

Definition: Let p be a prime p $ \in $ $ \mathbb{Z} $.

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood