Line 29: Line 29:
 
<center><math> P_X(x|B)\equiv P(X=x|B)=\frac{p(\{X=x\}\cap B)}{P(B)}</math></center>
 
<center><math> P_X(x|B)\equiv P(X=x|B)=\frac{p(\{X=x\}\cap B)}{P(B)}</math></center>
 
∀x ∈ ''R'', for a given B ∈ ''F''. <br/>
 
∀x ∈ ''R'', for a given B ∈ ''F''. <br/>
The function <math>p_x</math> is the conditional pmf of x. Recall  [[ECE600_F13_Conditional_probability_mhossain|Bayes' theorem and the Total Probability Law]]:<br/>
+
The function p<math>_X</math> is the conditional pmf of X. Recall  [[ECE600_F13_Conditional_probability_mhossain|Bayes' theorem and the Total Probability Law]]:<br/>
 
<center><math> P(A|B)=\frac{P(B|A)P(A)}{P(B)};\quad P(B), P(A)>0</math></center>
 
<center><math> P(A|B)=\frac{P(B|A)P(A)}{P(B)};\quad P(B), P(A)>0</math></center>
 
and <br/>
 
and <br/>
Line 37: Line 37:
 
In the case A = {X=x}, we get <br/>
 
In the case A = {X=x}, we get <br/>
 
<center><math>p_X(x|B) = \frac{P(B|X=x)p_X(x)}{P(B)}</math></center>
 
<center><math>p_X(x|B) = \frac{P(B|X=x)p_X(x)}{P(B)}</math></center>
where <math>p_X(x|B)</math> is the conditional pmf of X given B and <math>p_X(x)</math> is the pmf of X.
+
where p<math>_X</math>(x|B) is the conditional pmf of X given B and <math>p_X(x)</math> is the pmf of X. Note that Bayes' Theorem in this context requires not only that P(B) >0 but also that P(X = x) > 0.
  
 
We also can use the TPL to get <br/>
 
We also can use the TPL to get <br/>

Revision as of 10:54, 9 November 2013


Random Variables and Signals

Topic 7: Random Variables: Conditional Distributions




We will now learn how to represent conditional probabilities using the cdf/pdf/pmf. This will provide us some of the most powerful tools for working with random variables: the conditional pdf and conditional pmf.

Recall that

$ P(A|B) = \frac{P(A\cap B)}{P(B)} $

∀ A,B ∈ F with P(B) > 0.

We will consider this conditional probability when A = {X≤x} for a continuous random variable or A = {X=x} for a discrete random variable.



Discrete X

If P(B)>0, then let

$ P_X(x|B)\equiv P(X=x|B)=\frac{p(\{X=x\}\cap B)}{P(B)} $

∀x ∈ R, for a given B ∈ F.
The function p$ _X $ is the conditional pmf of X. Recall Bayes' theorem and the Total Probability Law:

$ P(A|B)=\frac{P(B|A)P(A)}{P(B)};\quad P(B), P(A)>0 $

and

$ P(B)=\sum_{i = 1}^nP(B|A_i)P(A_i) $

if $ A_1,...,A_n $ form a partition of S and $ P(A_i)>0 $ ∀i.

In the case A = {X=x}, we get

$ p_X(x|B) = \frac{P(B|X=x)p_X(x)}{P(B)} $

where p$ _X $(x|B) is the conditional pmf of X given B and $ p_X(x) $ is the pmf of X. Note that Bayes' Theorem in this context requires not only that P(B) >0 but also that P(X = x) > 0.

We also can use the TPL to get

$ p_X(x) = \sum_{i=1}^n p_X(x|A_i)P(A_i) $



Continuous X

Let A = {X≤x}. Then if P(B)>0, B ∈ F, definr

$ F_X(x|B)\equiv P(X\leq x|B) = \frac{P(\{X\leq x\}\cap B)}{P(B)} $

as the conditional cdf of X given B.
The conditional pdf of X given B is then

$ f_X(x|B) = \frac{d}{dx}F_X(x|B) $

Note that B may be an event involving X.

Example: let B = {X≤x} for some aR. Then

$ F_X(x|B) = \frac{P(\{X\leq x\}\cap\{X\leq a\})}{P(X\leq a)} $

Two cases:

  • Case (i): $ x>a $
$ F_X(x|B) = \frac{P(X\leq a)}{P(X\leq a} = 1 $
  • Case (ii): $ x>a $
$ F_X(x|B) = \frac{P(X\leq x)}{P(X\leq a} = \frac{F_X(x)}{F_X(a)} $


Fig 1: {X ≤ x} ∩ {X ≤ a} for the two different cases.


Now,

$ f_X(x|B) = f_X(x|X\leq a)=\begin{cases} 0 & x>a \\ \frac{f_X(x)}{F_X(a)} & x\leq a \end{cases} $
Fig 2: f$ _X $(x) and f$ _X $(x$ | $X ≤ a).


Bayes' Theorem for continuous X:
We can easily see that

$ F_X(x|B)= \frac{P(B|X\leq x)(F_X(x)}{P(B)} $

from previous version of Bayes' Theorem, and that

$ F_X(x)=\sum_{i=1}^n F_X(x|A_i)P(A_i) $

if $ A_1,...,A_n $ form a partition of S and P($ A_i $) > 0 ∀$ i $, from TPL.
but what we often want to know is a probability of the type P(A|X=x) for some AF. We could define this as

$ P(A|X=x)\equiv\frac{P(A\cap \{X=x\})}{P(X=x)} $

but the right hand side (rhs) would be 0/0 since X is continuous.
Instead, we will use the following definition in this case:

$ P(A|X=a)\equiv\lim_{\Delta x\rightarrow 0}P(A|x<X\leq x+\Delta x) $

using our standard definition of conditional probability for the rhs. This leads to the following derivation:

$ \begin{align} P(A|X=x) &= \lim_{\Delta x\rightarrow 0}\frac{P(x<X\leq x+\Delta x|A)P(A)}{P(x<X\leq x+\Delta x)} \\ \\ &= P(A)\lim_{\Delta x\rightarrow 0}\frac{F_X(x+\Delta x|A)-F_X(x|A)}{F_X(x+\Delta x)-F_X(x)} \\ \\ &= P(A)\frac{\lim_{\Delta x\rightarrow 0}\frac{F_X(x+\Delta x|A)-F_X(x|A)}{\Delta x}}{\lim_{\Delta x\rightarrow 0}\frac{F_X(x+\Delta x)-F_X(x)}{\Delta x}}\\ \\ &=P(A)\frac{f_X(x|A)}{f_X(x)} \end{align} $

So,

$ P(A|X=x)=\frac{f_X(x|A)P(A)}{f_X(x)} $

This is how Bayes' Theorem is normally stated for a continuous random variable X and an event AF with P(A) > 0.

We will revisit Bayes' Theorem one more time when we discuss two random variables.



References



Questions and comments

If you have any questions, comments, etc. please post them on this page



Back to all ECE 600 notes

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009