Line 58: Line 58:
  
 
Two cases:
 
Two cases:
 +
* Case (i): <math>x>a</math><br/>
 +
<center><math>F_X(x|B) = \frac{P(X\leq a)}{P(X\leq a} = 1</math></center>
 +
* Case (ii): <math>x>a>/math><br/>
 +
<center><math>F_X(x|B) = \frac{P(X\leq x)}{P(X\leq a} = \frac{F_X(x)}{F_X(a)}</math></center>
  
  

Revision as of 13:45, 10 October 2013


Random Variables and Signals

Topic 7: Random Variables: Conditional Distributions



We will now learn how to represent conditional probabilities using the cdf/pdf/pmf. This will provide us some of the most powerful tools for working with random variables: the conditional pdf and conditional pmf.

Recall that

$ P(A|B) = \frac{p(A\cap B)}{P(B)} $

∀ A,B ∈ F with P(B) > 0.

We will consider this conditional probability when A = {X≤x} for a continuous random variable or A = {X=x} for a discrete random variable.



Discrete X

If P(B)>0, then let

$ P_X(x|B)\equiv P(X=x|B)=\frac{p(\{X=x\}\cap B)}{P(B)} $

∀x ∈ R, for a given B ∈ F.
The function $ p_x $ is the conditional pmf of x. Recall Bayes' theorem and the Total Probability Law:

$ P(A|B)=\frac{P(B|A)P(A)}{P(B)};\quad P(B), P(A)>0 $

and

$ P(B)=\sum_{i = 1}^nP(B|A_i)P(A_i) $

if $ A_1,...,A_n $ form a partition of S and $ P(A_i)>0 $ ∀i.

In the case A = {X=x}, we get

$ p_X(x|B) = \frac{P(B|X=x)p_X(x)}{P(B)} $

where $ p_X(x|B) $ is the conditional pmf of X given B and $ p_X(x) $ is the pmf of X.

We also can use the TPL to get

$ p_X(x) = \sum_{i=1}^n p_X(x|A_i)P(A_i) $



Continuous X

Let A = {X≤x}. Then if P(B)>0, B ∈ F, definr

$ F_X(x|B)\equiv P(X\leq x|B) = \frac{P(\{X\leq x\}\cap B)}{P(B)} $

as the conditional cdf of X given B.
The conditional pdf of X given B is then

$ f_X(x|B) = \frac{d}{dx}F_X(x|B) $

Note that B may be an event involving X.

Example: let B = {X≤x} for some aR. Then

$ F_X(x|B) = \frac{P(\{X\leq x\}\cap\{X\leq a\})}{P(X\leq a)} $

Two cases:

  • Case (i): $ x>a $
$ F_X(x|B) = \frac{P(X\leq a)}{P(X\leq a} = 1 $
  • Case (ii): $ x>a>/math><br/> <center><math>F_X(x|B) = \frac{P(X\leq x)}{P(X\leq a} = \frac{F_X(x)}{F_X(a)} $</center>






References



Back to all ECE 600 notes

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman