Line 28: Line 28:
 
<center><math> P_X(x|B)\equiv P(X=x|B)=\frac{p(\{X=x\}\cap B)}{P(B)}</math></center>
 
<center><math> P_X(x|B)\equiv P(X=x|B)=\frac{p(\{X=x\}\cap B)}{P(B)}</math></center>
 
∀x ∈ ''R'', for a given B ∈ ''F''. <br/>
 
∀x ∈ ''R'', for a given B ∈ ''F''. <br/>
The function <math>p_x</math> is the conditional pmf of x. [[ECE600_F13_Conditional_probability_mhossain|Recall Bayes' theorem and the Total Probability Law]]:<br/>
+
The function <math>p_x</math> is the conditional pmf of x. Recall  [[ECE600_F13_Conditional_probability_mhossain|Bayes' theorem and the Total Probability Law]]:<br/>
 
<center><math> P(A|B)=\frac{P(B|A)P(A)}{P(B)};\quad P(B), P(A)>0</math></center>
 
<center><math> P(A|B)=\frac{P(B|A)P(A)}{P(B)};\quad P(B), P(A)>0</math></center>
 
and <br/>
 
and <br/>

Revision as of 14:14, 9 October 2013


Random Variables and Signals

Topic 7: Random Variables: Conditional Distributions



We will now learn how to represent conditional probabilities using the cdf/pdf/pmf. This will provide us some of the most powerful tools for working with random variables: the conditional pdf and conditional pmf.

Recall that

$ P(A|B) = \frac{p(A\cap B)}{P(B)} $

∀ A,B ∈ F with P(B) > 0.

We will consider this conditional probability when A = {X≤x} for a continuous random variable or A = {X=x} for a discrete random variable.



Discrete X

If P(B)>0, then let

$ P_X(x|B)\equiv P(X=x|B)=\frac{p(\{X=x\}\cap B)}{P(B)} $

∀x ∈ R, for a given B ∈ F.
The function $ p_x $ is the conditional pmf of x. Recall Bayes' theorem and the Total Probability Law:

$ P(A|B)=\frac{P(B|A)P(A)}{P(B)};\quad P(B), P(A)>0 $

and

$ P(B)=\sum_{i = 1}^nP(B|A_i)P(A_i) $

if $ A_1,...,A_n $ form a partition of S and $ P(A_i)>0 $ ∀i.

In the case A = {X=x}, we get

$ p_X(x|B) = \frac{P(B|X=x)p_X(x)}{P(B)} $

where $ p_X(x|B) $ is the conditional pmf of X given B and $ p_X(x) $ is the pmf of X.

We also can use the TPL to get

$ p_X(x) = \sum_{i=1}^n p_X(x|A_i)P(A_i) $



Continuous X

Let A = {X≤x}. Then if P(B)>0, B ∈ F, definr

$ F_X(x|B)\equiv P(X\leq x|B) = \frac{P(\{X\leq x\}\cap B)}{P(B)} $

as the conditional cdf of X given B.
The conditional pdf of X given B is then

$ f_X(x|B) = \frac{d}{dx}F_X(x|B) $

Note that B may be an event involving X.

Example: let B = {X≤x} for some aR. Then

$ F_X(x|B) = \frac{P(\{X\leq x\}\cap\{X\leq a\})}{P(X\leq a)} $

Two cases:






References



Back to all ECE 600 notes

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn