Line 90: Line 90:
 
<math>X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n}</math>  
 
<math>X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n}</math>  
  
<span class="texhtml"> = ''X''(''z'') = (9''z''<sup> + 3</sup> + 4''z''<sup> + 2</sup> + ''z''. The range of the value of z is from negative infinity to positive infinity
+
<span class="texhtml"> = ''X''(''z'') = (9''z''<sup> + 3</sup> + 4''z''<sup> + 2</sup> + ''z''). The range of the value of z is from negative infinity to positive infinity
 
</span>  
 
</span>  
 +
 +
:<span style="color:red"> TA's comment: Show your derivation</span>
  
 
=== Answer 9  ===
 
=== Answer 9  ===
Line 102: Line 104:
  
 
<br>  
 
<br>  
 +
 +
:<span style="color:red"> TA's comment: In your second step, the summation should be from -3 to 0. But since </span>
  
 
=== Answer 10  ===
 
=== Answer 10  ===
Line 128: Line 132:
  
 
[[Category:ECE301]] [[Category:ECE438]] [[Category:ECE438Fall2013Boutin]] [[Category:Problem_solving]] [[Category:Z-transform]]
 
[[Category:ECE301]] [[Category:ECE438]] [[Category:ECE438Fall2013Boutin]] [[Category:Problem_solving]] [[Category:Z-transform]]
 +
 +
:<span style="color:red"> TA's comment: Simple and straightforward.</span>
  
 
=== Answer 12  ===
 
=== Answer 12  ===
Line 141: Line 147:
 
<math>X(z) = \sum_{n=-3}^{0} n^2 z^{-n}</math>&nbsp;
 
<math>X(z) = \sum_{n=-3}^{0} n^2 z^{-n}</math>&nbsp;
  
X(z) = (-3)<sup>2</sup>z<sup>3</sup> + (-2)<sup>2</sup>z<sup>2</sup> + (-1)<sup>2</sup>z<sup>1</sup> (0)<sup>2</sup>z<sup>0</sup>
+
X(z) = (-3)<sup>2</sup>z<sup>3</sup> + (-2)<sup>2</sup>z<sup>2</sup> + (-1)<sup>2</sup>z<sup>1</sup> + (0)<sup>2</sup>z<sup>0</sup>
  
 
X(z) = 9z<sup>3</sup> + 4z<sup>2</sup> + z
 
X(z) = 9z<sup>3</sup> + 4z<sup>2</sup> + z
Line 148: Line 154:
  
 
  <br>
 
  <br>
 +
 +
:<span style="color:red"> TA's comment: In the third step, it's better write it as a summation. </span>

Revision as of 09:37, 20 September 2013

Practice Problem on Z-transform computation

Compute the compute the z-transform (including the ROC) of the following DT signal:

$ x[n]= n^2 \left( u[n+3]- u[n-1] \right) $

(Write enough intermediate steps to fully justify your answer.)


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!

No need to write your name: we can find out who wrote what by checking the history of the page.


Answer 1

Andrei Henrique Patriota Campos x[n] = n2(u[n + 2] − u[n − 1]).

$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $

$ = \sum_{n=-3}^{0} n^2 z^{-n} $

= 9z3 + 4z2 + z

= z3(9 + 4z − 1 + z − 2)

= X(z) = (9 + 4z − 1 + z − 2) / (z − 3), for all z in complex plane.

TA's comment: z can not be $ \infty $ for the z transform to converge

Answer 2

x[n] = n2(u[n + 3] − u[n − 1])

x[n] = n2(δ(n + 3) + δ(n + 2) + δ(n + 1) + δ(n))

$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $

$ X(z) = \sum_{n=-\infty}^{+\infty} n^2(\delta(n+3)+\delta(n+2)+\delta(n+1)+\delta(n)) z^{-n} $

X(z) = 9z3 + 4z2 + z + 1 for all z in complex plane


TA's comment: When n=0,x[n]=0. So the constant term is 0.

Answer 3

Write it here.

Answer 4

Write it here.

Answer 5

Tony Mlinarich

$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $

X(z) = n2(δ(n + 3) + δ(n + 2) + δ(n + 1) + δ(n) + δ(n − 1))zn

X(z) = 9z3 + 4z2 + z + 1/z<\span>

TA's comment: u[n+3]-u[n-1] is non-zero only when n=-3,-2,-1,0. So x[n]= n2(δ(n + 3) + δ(n + 2) + δ(n + 1) + δ(n))

Answer 7

Yixiang Liu

$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $

$ X(z) = \sum_{n=-\infty}^{+\infty} n^{2}[{u[n+3]-u[n-1]}]z^{-n} $

This expression equals to zero except n = -3, -2, -1

so X(z) = x[ − 3]z3 + x[ − 2]z2 + x[ − 1]z1

      = 9z^{3} + 4z^{2} + z

Answer 8

Xi Wang

$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $

= X(z) = (9z + 3 + 4z + 2 + z). The range of the value of z is from negative infinity to positive infinity

TA's comment: Show your derivation

Answer 9

$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $

$ X(z) = \sum_{n=-3}^{+1} x[n] z^{-n} $

= X(z) = 9z + 3 + 4z +2 + z + 1 for all z in complex plane


TA's comment: In your second step, the summation should be from -3 to 0. But since

Answer 10

Cary Wood

$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $

$ X(z) = \sum_{n=-3}^{0} x[n] z^{-n} $

= X(z) = 9z + 3 + 4z + 2 + z, for all z in complex plane


Answer 11

Shiyu Wang

x[n] = n2(u[n + 3] − u[n − 1])

x[n] = n2   (-3=< n < 1)

$ X(z) = \sum_{n=-3}^{0} n^2 z^{-n} $ 

x(z)=9z3+4z2+z, for all z in complex plane except z=infinity

TA's comment: Simple and straightforward.

Answer 12

Matt Miller

x[n] = n2(u[n+3]-u[n-1])

x[n] = n2u[n+3] - n2u[n-1]

x[n] = n2|0-3

$ X(z) = \sum_{n=-3}^{0} n^2 z^{-n} $ 

X(z) = (-3)2z3 + (-2)2z2 + (-1)2z1 + (0)2z0

X(z) = 9z3 + 4z2 + z

lim z->inf X(1/2) = 0, lim z->0 X(1/2) = inf --> valid for all Z in complex plane.


TA's comment: In the third step, it's better write it as a summation.

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal