Line 1: Line 1:
[[Category:ECE301]]
+
<br>
[[Category:ECE438]]
+
 
[[Category:ECE438Fall2013Boutin]]
+
= [[:Category:Problem solving|Practice Question]], [[ECE438]] Fall 2013, [[User:Mboutin|Prof. Boutin]] =
[[Category:problem solving]]
+
 
[[Category:z-transform]]
+
On computing the inverse z-transform of a discrete-time signal.
[[Category:inverse z-transform]]
+
  
= [[:Category:Problem_solving|Practice Question]], [[ECE438]] Fall 2013, [[User:Mboutin|Prof. Boutin]] =
 
On computing the inverse z-transform of a discrete-time signal.
 
 
----
 
----
 +
 
Compute the inverse z-transform of  
 
Compute the inverse z-transform of  
  
Line 14: Line 12:
  
 
(Write enough intermediate steps to fully justify your answer.)  
 
(Write enough intermediate steps to fully justify your answer.)  
 +
 
----
 
----
==Share your answers below==
+
 
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!
+
== Share your answers below ==
 +
 
 +
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!  
 +
 
 
----
 
----
===Answer 1===
 
<math>X(z) = \frac{A}{3-z}+\frac{B}{2-z}</math>
 
  
<math>= -\frac{1}{3-z}-\frac{1}{2-z}</math>
+
=== Answer 1 ===
  
<math>= -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})-\frac{1}{2}(\frac{1}{1-\frac{z}{2}})</math>
+
<math>X(z) = \frac{A}{3-z}+\frac{B}{2-z}</math>
 +
 
 +
<math>= -\frac{1}{3-z}-\frac{1}{2-z}</math>
 +
 
 +
<math>= -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})-\frac{1}{2}(\frac{1}{1-\frac{z}{2}})</math>  
  
 
<math>= -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{z}{3})^n -\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{z}{2})^n</math>  
 
<math>= -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{z}{3})^n -\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{z}{2})^n</math>  
Line 29: Line 33:
 
<math>= \sum_{n=0}^{+\infty}[(-\frac{1}{3}) (\frac{1}{3})^n + (-\frac{1}{2})(\frac{1}{2})^n]z^n</math>  
 
<math>= \sum_{n=0}^{+\infty}[(-\frac{1}{3}) (\frac{1}{3})^n + (-\frac{1}{2})(\frac{1}{2})^n]z^n</math>  
  
Let k=-n
+
Let k=-n  
  
 
<math>= \sum_{k=-\infty}^{+\infty}u[-k][(-\frac{1}{3})3^k + (-\frac{1}{2})2^k]z^{-k}</math>  
 
<math>= \sum_{k=-\infty}^{+\infty}u[-k][(-\frac{1}{3})3^k + (-\frac{1}{2})2^k]z^{-k}</math>  
  
by comparison with z-transform formula
+
by comparison with z-transform formula  
  
<math>x[n]=u[-n](-3^{n-1}-2^{n-1})</math>
+
<span class="texhtml">''x''[''n''] = ''u''[ − ''n'']( 3<sup>''n'' − 1</sup> − 2<sup>''n'' − 1</sup>)</span>  
=== Answer 2===
+
 
Kyungjun Kim
+
=== Answer 2 ===
 +
 
 +
Kyungjun Kim  
  
 
Using a partial fraction expansion, we can change the original equation to  
 
Using a partial fraction expansion, we can change the original equation to  
  
<math>X(z) = \frac{A}{3-z}+\frac{B}{2-z}</math> Where A = 1, B = -1, so we get
+
<math>X(z) = \frac{A}{3-z}+\frac{B}{2-z}</math> Where A = 1, B = -1, so we get  
  
<math>= -\frac{1}{3-z}-\frac{1}{2-z}</math>
+
<math>= -\frac{1}{3-z}-\frac{1}{2-z}</math>  
  
 
By factoring out 1/3 for the first term, and 1/2 for the second term, we can have both terms in form of  
 
By factoring out 1/3 for the first term, and 1/2 for the second term, we can have both terms in form of  
  
<math> \frac{1}{1-r} </math>, which is equal to <math> \sum_{n=0}^{+\infty} (\frac{1}{r})^n </math>
+
<math> \frac{1}{1-r} </math>, which is equal to <math> \sum_{n=0}^{+\infty} (\frac{1}{r})^n </math>  
  
<math>= -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})-\frac{1}{2}(\frac{1}{1-\frac{z}{2}})</math>
+
<math>= -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})-\frac{1}{2}(\frac{1}{1-\frac{z}{2}})</math>  
  
 
<math>= -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{z}{3})^n -\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{z}{2})^n</math>  
 
<math>= -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{z}{3})^n -\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{z}{2})^n</math>  
Line 55: Line 61:
 
<math>= \sum_{n=0}^{+\infty}[(-\frac{1}{3}) (\frac{1}{3})^n + (-\frac{1}{2})(\frac{1}{2})^n]z^n</math>  
 
<math>= \sum_{n=0}^{+\infty}[(-\frac{1}{3}) (\frac{1}{3})^n + (-\frac{1}{2})(\frac{1}{2})^n]z^n</math>  
  
Then let k=-n
+
Then let k=-n  
  
 
<math>= \sum_{k=-\infty}^{+\infty}u[-k][(-\frac{1}{3})3^k + (-\frac{1}{2})2^k]z^{-k}</math>  
 
<math>= \sum_{k=-\infty}^{+\infty}u[-k][(-\frac{1}{3})3^k + (-\frac{1}{2})2^k]z^{-k}</math>  
  
Comparing it with z-transform formula, we can get
+
Comparing it with z-transform formula, we can get  
  
<math>x[n]=u[-n](-3^{n-1}-2^{n-1})</math>
+
<span class="texhtml">''x''[''n''] = ''u''[ − ''n'']( 3<sup>''n'' − 1</sup> − 2<sup>''n'' − 1</sup>)</span>  
  
===Answer 3===
+
=== Answer 3 ===
By Yeong Ho Lee
+
  
First, using partial fraction we get..
+
By Yeong Ho Lee
  
<math> X(z) = \frac{A}{3-z}+\frac{B}{2-z}</math>
+
First, using partial fraction we get..
  
A(2-z) + B(3-z) = 1
+
<math> X(z) = \frac{A}{3-z}+\frac{B}{2-z}</math>
  
let z=2, then B=1
+
A(2-z) + B(3-z) = 1  
  
let z=3, then A=-1
+
let z=2, then B=1  
  
<math> = -\frac{1}{3-z}+\frac{1}{2-z}</math>
+
let z=3, then A=-1  
  
<math>= -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})+\frac{1}{2}(\frac{1}{1-\frac{z}{2}})</math>
+
<math> = -\frac{1}{3-z}+\frac{1}{2-z}</math>
 +
 
 +
<math>= -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})+\frac{1}{2}(\frac{1}{1-\frac{z}{2}})</math>  
  
 
<math>= -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{z}{3})^n +\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{z}{2})^n</math>  
 
<math>= -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{z}{3})^n +\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{z}{2})^n</math>  
  
<math>= -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{1}{3})^n(z)^n +\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{1}{2})^n(z)^n</math>
+
<math>= -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{1}{3})^n(z)^n +\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{1}{2})^n(z)^n</math>  
  
now let n = -k
+
now let n = -k  
  
<math>= -\frac{1}{3}\sum_{n=0}^{+\infty} 3^{k} z^{-k} +\frac{1}{2}\sum_{n=0}^{+\infty} 2^{k}z^{-k}</math>
+
<math>= -\frac{1}{3}\sum_{n=0}^{+\infty} 3^{k} z^{-k} +\frac{1}{2}\sum_{n=0}^{+\infty} 2^{k}z^{-k}</math>  
  
by comparison with z-transfrom formula
+
by comparison with z-transfrom formula  
  
<math>x[n]=-3^{n-1}u[-n]+2^{n-1}u[-n]</math>
+
<span class="texhtml">''x''[''n''] = 3<sup>''n'' − 1</sup>''u''[ − ''n''] + 2<sup>''n'' − 1</sup>''u''[ − ''n'']</span>  
  
<math>x[n]=(-3^{n-1}+2^{n-1})u[-n] </math>
+
<span class="texhtml">''x''[''n''] = ( 3<sup>''n'' − 1</sup> + 2<sup>''n'' − 1</sup>)''u''[ − ''n'']</span>  
  
 +
<br>
  
===Answer 4===
+
=== Answer 4 ===
  
<math>X(z) = \frac{A}{3-z}+\frac{B}{2-z}</math>
+
<math>X(z) = \frac{A}{3-z}+\frac{B}{2-z}</math>  
  
<math>= -\frac{1}{3-z} - \frac{1}{2-z}</math>
+
<math>= -\frac{1}{3-z} - \frac{1}{2-z}</math>  
  
<math>= -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})-\frac{1}{2}(\frac{1}{1-\frac{z}{2}})</math>
+
<math>= -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})-\frac{1}{2}(\frac{1}{1-\frac{z}{2}})</math>  
  
 
<math>= -\frac{1}{3}\sum_{k=0}^{+\infty} (\frac{z}{3})^k -\frac{1}{2}\sum_{k=0}^{+\infty} (\frac{z}{2})^k</math>  
 
<math>= -\frac{1}{3}\sum_{k=0}^{+\infty} (\frac{z}{3})^k -\frac{1}{2}\sum_{k=0}^{+\infty} (\frac{z}{2})^k</math>  
Line 107: Line 115:
 
<math>= \sum_{k=0}^{+\infty}[(-\frac{1}{3})(\frac{1}{3})^k + (-\frac{1}{2})(\frac{1}{2})^k]u[k] * z^k</math>  
 
<math>= \sum_{k=0}^{+\infty}[(-\frac{1}{3})(\frac{1}{3})^k + (-\frac{1}{2})(\frac{1}{2})^k]u[k] * z^k</math>  
  
Substitute k with -n
+
Substitute k with -n  
  
 
<math>= \sum_{n=-\infty}^{+\infty}[(-\frac{1}{3})3^{-n} + (-\frac{1}{2})2^{-n}]u[-n] * z^{-n}</math>  
 
<math>= \sum_{n=-\infty}^{+\infty}[(-\frac{1}{3})3^{-n} + (-\frac{1}{2})2^{-n}]u[-n] * z^{-n}</math>  
Line 113: Line 121:
 
Look up Z transform equation on RHEA table and see that X(z) becomes...  
 
Look up Z transform equation on RHEA table and see that X(z) becomes...  
  
<math> x[n]=(-3^{n-1}-2^{n-1})u[-n] </math>
+
<span class="texhtml">''x''[''n''] = ( − 3<sup>''n'' − 1</sup> − 2<sup>''n'' − 1</sup>)''u''[ − ''n'']</span>
 +
 
 +
<br>
 +
 
 +
=== Answer 5  ===
 +
 
 +
by partical fraction, we get,
 +
 
 +
<math>X(z) = \frac{A}{3-z}+\frac{B}{2-z}</math>
 +
 
 +
<math>= -\frac{1}{3-z}+\frac{1}{2-z}</math>
 +
 
 +
For <math>\quad \text{ROC} \quad |z|<2 </math>
 +
 
 +
<math>X(z)= -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})+\frac{1}{2}(\frac{1}{1-\frac{z}{2}})</math>
 +
 
 +
<br> <math>= -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{z}{3})^n +\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{z}{2})^n</math>
 +
 
 +
assume n=-k.
 +
 
 +
<math>X(z)= -\frac{1}{3}\sum_{k=-\infty}^{0} 3^{k} z^{-k} +\frac{1}{2}\sum_{k=-\infty}^{0} 2^{k}z^{-k}</math>
 +
 
 +
<br> <math>= \sum_{k=-\infty}^{+\infty}u[-k][(-\frac{1}{3})3^k + \frac{1}{2}2^k]z^{-k}</math>
 +
 
 +
So, x[n] = (−3<sup>n-1</sup>+2<sup>n-1</sup>)u[-n] <br>  
 +
 
 +
[[2013 Fall ECE 438 Boutin|Back to ECE438 Fall 2013 Prof. Boutin]]
  
[[2013_Fall_ECE_438_Boutin|Back to ECE438 Fall 2013 Prof. Boutin]]
+
[[Category:ECE301]] [[Category:ECE438]] [[Category:ECE438Fall2013Boutin]] [[Category:Problem_solving]] [[Category:Z-transform]] [[Category:Inverse_z-transform]]

Revision as of 22:32, 19 September 2013


Practice Question, ECE438 Fall 2013, Prof. Boutin

On computing the inverse z-transform of a discrete-time signal.


Compute the inverse z-transform of

$ X(z) =\frac{1}{(3-z)(2-z)}, \quad \text{ROC} \quad |z|<2 $.

(Write enough intermediate steps to fully justify your answer.)


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ X(z) = \frac{A}{3-z}+\frac{B}{2-z} $

$ = -\frac{1}{3-z}-\frac{1}{2-z} $

$ = -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})-\frac{1}{2}(\frac{1}{1-\frac{z}{2}}) $

$ = -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{z}{3})^n -\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{z}{2})^n $

$ = \sum_{n=0}^{+\infty}[(-\frac{1}{3}) (\frac{1}{3})^n + (-\frac{1}{2})(\frac{1}{2})^n]z^n $

Let k=-n

$ = \sum_{k=-\infty}^{+\infty}u[-k][(-\frac{1}{3})3^k + (-\frac{1}{2})2^k]z^{-k} $

by comparison with z-transform formula

x[n] = u[ − n]( − 3n − 1 − 2n − 1)

Answer 2

Kyungjun Kim

Using a partial fraction expansion, we can change the original equation to

$ X(z) = \frac{A}{3-z}+\frac{B}{2-z} $ Where A = 1, B = -1, so we get

$ = -\frac{1}{3-z}-\frac{1}{2-z} $

By factoring out 1/3 for the first term, and 1/2 for the second term, we can have both terms in form of

$ \frac{1}{1-r} $, which is equal to $ \sum_{n=0}^{+\infty} (\frac{1}{r})^n $

$ = -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})-\frac{1}{2}(\frac{1}{1-\frac{z}{2}}) $

$ = -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{z}{3})^n -\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{z}{2})^n $

$ = \sum_{n=0}^{+\infty}[(-\frac{1}{3}) (\frac{1}{3})^n + (-\frac{1}{2})(\frac{1}{2})^n]z^n $

Then let k=-n

$ = \sum_{k=-\infty}^{+\infty}u[-k][(-\frac{1}{3})3^k + (-\frac{1}{2})2^k]z^{-k} $

Comparing it with z-transform formula, we can get

x[n] = u[ − n]( − 3n − 1 − 2n − 1)

Answer 3

By Yeong Ho Lee

First, using partial fraction we get..

$ X(z) = \frac{A}{3-z}+\frac{B}{2-z} $

A(2-z) + B(3-z) = 1

let z=2, then B=1

let z=3, then A=-1

$ = -\frac{1}{3-z}+\frac{1}{2-z} $

$ = -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})+\frac{1}{2}(\frac{1}{1-\frac{z}{2}}) $

$ = -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{z}{3})^n +\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{z}{2})^n $

$ = -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{1}{3})^n(z)^n +\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{1}{2})^n(z)^n $

now let n = -k

$ = -\frac{1}{3}\sum_{n=0}^{+\infty} 3^{k} z^{-k} +\frac{1}{2}\sum_{n=0}^{+\infty} 2^{k}z^{-k} $

by comparison with z-transfrom formula

x[n] = − 3n − 1u[ − n] + 2n − 1u[ − n]

x[n] = ( − 3n − 1 + 2n − 1)u[ − n]


Answer 4

$ X(z) = \frac{A}{3-z}+\frac{B}{2-z} $

$ = -\frac{1}{3-z} - \frac{1}{2-z} $

$ = -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})-\frac{1}{2}(\frac{1}{1-\frac{z}{2}}) $

$ = -\frac{1}{3}\sum_{k=0}^{+\infty} (\frac{z}{3})^k -\frac{1}{2}\sum_{k=0}^{+\infty} (\frac{z}{2})^k $

$ = \sum_{k=0}^{+\infty}[(-\frac{1}{3})(\frac{1}{3})^k + (-\frac{1}{2})(\frac{1}{2})^k]u[k] * z^k $

Substitute k with -n

$ = \sum_{n=-\infty}^{+\infty}[(-\frac{1}{3})3^{-n} + (-\frac{1}{2})2^{-n}]u[-n] * z^{-n} $

Look up Z transform equation on RHEA table and see that X(z) becomes...

x[n] = ( − 3n − 1 − 2n − 1)u[ − n]


Answer 5

by partical fraction, we get,

$ X(z) = \frac{A}{3-z}+\frac{B}{2-z} $

$ = -\frac{1}{3-z}+\frac{1}{2-z} $

For $ \quad \text{ROC} \quad |z|<2 $

$ X(z)= -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})+\frac{1}{2}(\frac{1}{1-\frac{z}{2}}) $


$ = -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{z}{3})^n +\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{z}{2})^n $

assume n=-k.

$ X(z)= -\frac{1}{3}\sum_{k=-\infty}^{0} 3^{k} z^{-k} +\frac{1}{2}\sum_{k=-\infty}^{0} 2^{k}z^{-k} $


$ = \sum_{k=-\infty}^{+\infty}u[-k][(-\frac{1}{3})3^k + \frac{1}{2}2^k]z^{-k} $

So, x[n] = (−3n-1+2n-1)u[-n]

Back to ECE438 Fall 2013 Prof. Boutin

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn