(New page: == Fourier transform == We are going to use the following: <math>X(\omega)=\frac{1}{(1+j\omega)(2+j\omega)}</math> == The inverse == <math>X(\omega)=\frac{1}{(1+j\omega)(2+j\omega)} = ...)
 
 
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:inverse Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of inverse Fourier transform (CT signals) ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 +
 +
 
== Fourier transform ==
 
== Fourier transform ==
 
We are going to use the following:
 
We are going to use the following:
Line 16: Line 27:
 
   e^{-t}+e^{-2t}, & t\geq 0
 
   e^{-t}+e^{-2t}, & t\geq 0
 
\end{cases}</math>
 
\end{cases}</math>
 +
 +
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 11:51, 16 September 2013

Example of Computation of inverse Fourier transform (CT signals)

A practice problem on CT Fourier transform



Fourier transform

We are going to use the following:

$ X(\omega)=\frac{1}{(1+j\omega)(2+j\omega)} $


The inverse

$ X(\omega)=\frac{1}{(1+j\omega)(2+j\omega)} = \frac{1}{1+j\omega} - \frac{1}{2+j\omega} $

$ f(t)= F^{-1}\frac{1}{1+j\omega} - F^{-1}\frac{1}{2+j\omega}\, $

$ = \begin{cases} 0, & t\leq 0 \\ e^{-t}+e^{-2t}, & t\geq 0 \end{cases} $


Back to Practice Problems on CT Fourier transform

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett