(New page: Compute the Inverse Fourier transform of: <math>\mathcal{X}(\omega)=3\pi \delta (\omega-\pi)</math> Using the Formula for Inverse Fourier Transforms: <math> \mathcal{F}^{-1}(\mathcal{X}...)
 
 
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:inverse Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of inverse Fourier transform (CT signals) ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 
Compute the Inverse Fourier transform of:
 
Compute the Inverse Fourier transform of:
  
Line 21: Line 30:
 
=\frac{3\pi}{2\pi}e^{j\pi t}=1.5e^{j\pi t}
 
=\frac{3\pi}{2\pi}e^{j\pi t}=1.5e^{j\pi t}
 
</math>
 
</math>
 +
 +
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 11:48, 16 September 2013

Example of Computation of inverse Fourier transform (CT signals)

A practice problem on CT Fourier transform


Compute the Inverse Fourier transform of:

$ \mathcal{X}(\omega)=3\pi \delta (\omega-\pi) $

Using the Formula for Inverse Fourier Transforms:

$ \mathcal{F}^{-1}(\mathcal{X}(\omega))= x(t)= \frac{1}{2\pi}\int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{j\omega t} \,d\omega $

So:

$ x(t)= \frac{1}{2\pi}\int_{-\infty}^{\infty}3\pi \delta (\omega-\pi)e^{j\omega t} \,d\omega $ Using sifting property:

$ =\frac{3\pi}{2\pi}e^{j\pi t}=1.5e^{j\pi t} $


Back to Practice Problems on CT Fourier transform

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett