Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:inverse Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of inverse Fourier transform (CT signals) ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 +
 
== inverse F.T ==
 
== inverse F.T ==
  
Line 13: Line 23:
  
 
<math>=e^{j3\pi} + \frac{1}{2\pi}[e^{-j5\pi t}-e^{j7\pi t}]</math>
 
<math>=e^{j3\pi} + \frac{1}{2\pi}[e^{-j5\pi t}-e^{j7\pi t}]</math>
 +
 +
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 11:46, 16 September 2013

Example of Computation of inverse Fourier transform (CT signals)

A practice problem on CT Fourier transform


inverse F.T

assume

$ X(\omega) = 7\pi\delta(\omega-3\pi)+\delta(\omega+5\pi)-\delta(\omega-7\pi)\! $


answer

$ x(t)= \frac{1}{2\pi}\int_{-\infty}^{\infty}7\pi\delta(\omega-3\pi)+\delta(\omega+5\pi) - \delta(\omega-7\pi)e^{jwt}dw $

$ =\frac{1}{2\pi}[2\pi^{j3\pi t} + e^{-j5\pi t}- e^{j7\pi t}] $

$ =e^{j3\pi} + \frac{1}{2\pi}[e^{-j5\pi t}-e^{j7\pi t}] $


Back to Practice Problems on CT Fourier transform

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood