(New page: == Inverse F.T'ing == Given <math>X(\omega) = 3\pi\delta(\omega-\pi)+\delta(\omega-2\pi)-2\pi\delta(\omega-3\pi)\!</math> ____ <math>x(t)= \frac{1}{2\pi}\int_{-\infty}^{\infty}X(\omega...) |
|||
Line 1: | Line 1: | ||
+ | [[Category:problem solving]] | ||
+ | [[Category:ECE301]] | ||
+ | [[Category:ECE]] | ||
+ | [[Category:Fourier transform]] | ||
+ | [[Category:inverse Fourier transform]] | ||
+ | [[Category:signals and systems]] | ||
+ | == Example of Computation of inverse Fourier transform (CT signals) == | ||
+ | A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]] | ||
+ | ---- | ||
+ | |||
== Inverse F.T'ing == | == Inverse F.T'ing == | ||
Given | Given | ||
Line 19: | Line 29: | ||
<math>x(t)= \frac{3*e^{j\pi*t}}{2}e^{jwt}+\frac{e^{j2\pi*t}}{2\pi}e^{jwt}-e^{j3*\pi*t}e^{jwt}</math> | <math>x(t)= \frac{3*e^{j\pi*t}}{2}e^{jwt}+\frac{e^{j2\pi*t}}{2\pi}e^{jwt}-e^{j3*\pi*t}e^{jwt}</math> | ||
+ | |||
+ | ---- | ||
+ | [[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]] |
Latest revision as of 11:40, 16 September 2013
Example of Computation of inverse Fourier transform (CT signals)
A practice problem on CT Fourier transform
Inverse F.T'ing
Given
$ X(\omega) = 3\pi\delta(\omega-\pi)+\delta(\omega-2\pi)-2\pi\delta(\omega-3\pi)\! $
____
$ x(t)= \frac{1}{2\pi}\int_{-\infty}^{\infty}X(\omega)e^{jwt}dw $
$ x(t)= \frac{1}{2\pi}\int_{-\infty}^{\infty}[3\pi\delta(\omega-\pi)+\delta(\omega-2\pi)-2\pi\delta(\omega-3\pi)\!]e^{jwt}dw $
$ x(t)= \frac{1}{2\pi}\int_{-\infty}^{\infty}3\pi\delta(\omega-\pi)e^{jwt}dw+\frac{1}{2\pi}\int_{-\infty}^{\infty}\delta(\omega-2\pi)e^{jwt}dw-\frac{1}{2\pi}\int_{-\infty}^{\infty}2\pi\delta(\omega-3\pi)\!e^{jwt}dw $
$ x(t)= \frac{3}{2}\int_{-\infty}^{\infty}\delta(\omega-\pi)e^{jwt}dw+\frac{1}{2\pi}\int_{-\infty}^{\infty}\delta(\omega-2\pi)e^{jwt}dw-\int_{-\infty}^{\infty}\delta(\omega-3\pi)\!e^{jwt}dw $
$ x(t)= \frac{3*e^{j\pi*t}}{2}e^{jwt}+\frac{e^{j2\pi*t}}{2\pi}e^{jwt}-e^{j3*\pi*t}e^{jwt} $