(New page: == Inverse F.T'ing == Given <math>X(\omega) = 3\pi\delta(\omega-\pi)+\delta(\omega-2\pi)-2\pi\delta(\omega-3\pi)\!</math> ____ <math>x(t)= \frac{1}{2\pi}\int_{-\infty}^{\infty}X(\omega...)
 
 
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:inverse Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of inverse Fourier transform (CT signals) ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 +
 
== Inverse F.T'ing ==
 
== Inverse F.T'ing ==
 
Given
 
Given
Line 19: Line 29:
  
 
<math>x(t)= \frac{3*e^{j\pi*t}}{2}e^{jwt}+\frac{e^{j2\pi*t}}{2\pi}e^{jwt}-e^{j3*\pi*t}e^{jwt}</math>
 
<math>x(t)= \frac{3*e^{j\pi*t}}{2}e^{jwt}+\frac{e^{j2\pi*t}}{2\pi}e^{jwt}-e^{j3*\pi*t}e^{jwt}</math>
 +
 +
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 11:40, 16 September 2013

Example of Computation of inverse Fourier transform (CT signals)

A practice problem on CT Fourier transform


Inverse F.T'ing

Given

$ X(\omega) = 3\pi\delta(\omega-\pi)+\delta(\omega-2\pi)-2\pi\delta(\omega-3\pi)\! $


____

$ x(t)= \frac{1}{2\pi}\int_{-\infty}^{\infty}X(\omega)e^{jwt}dw $


$ x(t)= \frac{1}{2\pi}\int_{-\infty}^{\infty}[3\pi\delta(\omega-\pi)+\delta(\omega-2\pi)-2\pi\delta(\omega-3\pi)\!]e^{jwt}dw $


$ x(t)= \frac{1}{2\pi}\int_{-\infty}^{\infty}3\pi\delta(\omega-\pi)e^{jwt}dw+\frac{1}{2\pi}\int_{-\infty}^{\infty}\delta(\omega-2\pi)e^{jwt}dw-\frac{1}{2\pi}\int_{-\infty}^{\infty}2\pi\delta(\omega-3\pi)\!e^{jwt}dw $


$ x(t)= \frac{3}{2}\int_{-\infty}^{\infty}\delta(\omega-\pi)e^{jwt}dw+\frac{1}{2\pi}\int_{-\infty}^{\infty}\delta(\omega-2\pi)e^{jwt}dw-\int_{-\infty}^{\infty}\delta(\omega-3\pi)\!e^{jwt}dw $

$ x(t)= \frac{3*e^{j\pi*t}}{2}e^{jwt}+\frac{e^{j2\pi*t}}{2\pi}e^{jwt}-e^{j3*\pi*t}e^{jwt} $


Back to Practice Problems on CT Fourier transform

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison