Line 1: | Line 1: | ||
+ | [[Category:problem solving]] | ||
+ | [[Category:ECE301]] | ||
+ | [[Category:ECE]] | ||
+ | [[Category:Fourier transform]] | ||
+ | [[Category:signals and systems]] | ||
+ | == Example of Computation of Fourier transform of a CT SIGNAL == | ||
+ | A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]] | ||
+ | ---- | ||
+ | |||
<math>\ x(t) = e^{-2|t|}cos(8t)</math> | <math>\ x(t) = e^{-2|t|}cos(8t)</math> | ||
Line 18: | Line 27: | ||
<pre> 4*(68+w^2)/(68+w^2-16*w)/(68+w^2+16*w) <\pre> | <pre> 4*(68+w^2)/(68+w^2-16*w)/(68+w^2+16*w) <\pre> | ||
+ | |||
+ | ---- | ||
+ | [[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]] |
Revision as of 11:32, 16 September 2013
Example of Computation of Fourier transform of a CT SIGNAL
A practice problem on CT Fourier transform
$ \ x(t) = e^{-2|t|}cos(8t) $
$ X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt \! $
$ = \int_{-\infty}^{\infty} e^{-2|t|}cos(8t) e^{-j\omega t} dt \! $
$ = \int_{-\infty}^{0} e^{2|t|}cos(8t) e^{-j\omega t} dt \! + \int_{0}^{\infty} e^{-2|t|}cos(8t) e^{-j\omega t} dt \! $
after quite a bit of math I get the answer to be
$ \frac{1}{2}(\frac{1}{2 + j8 - jw} + \frac{1}{2 -j8 -jw} + \frac{1}{2 - j8 - jw} \frac{1}{2 + j8 + jw}) $
I'm not sure if I'm right though because when I checked it in matlab the answer I got was
4*(68+w^2)/(68+w^2-16*w)/(68+w^2+16*w) <\pre> ---- [[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]