Line 5: Line 5:
 
[[Category:signals and systems]]
 
[[Category:signals and systems]]
 
== Example of Computation of Fourier transform of a CT SIGNAL ==
 
== Example of Computation of Fourier transform of a CT SIGNAL ==
A [[CT_Fourier_transform_practice_problems_list|practice problem on Fourier transform]]
+
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 
----
 
----
  
Line 26: Line 26:
 
<math>\,\mathcal{X}(\omega)=\frac{1}{2(5-2j+j\omega)} + \frac{1}{2(5+2j+j\omega)}</math>
 
<math>\,\mathcal{X}(\omega)=\frac{1}{2(5-2j+j\omega)} + \frac{1}{2(5+2j+j\omega)}</math>
 
----
 
----
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on Fourier transform]]
+
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 11:22, 16 September 2013

Example of Computation of Fourier transform of a CT SIGNAL

A practice problem on CT Fourier transform


$ X(t)=e^{-5t}cos{(2t)}u(t)dt $


$ \,\mathcal{X}(\omega)=\int_{-\infty}^{+\infty}x(t)e^{-j\omega t}\,dt\, $

$ \,\mathcal{X}(\omega)=\int_{0}^{+\infty}e^{-5t}cos{(2t)}e^{-j\omega t}\,dt, $

$ \,\mathcal{X}(\omega)=1/2\int_{0}^{+\infty}e^{-5t}e^{2jt}e^{-j\omega t}\,dt + 1/2\int_{0}^{+\infty}e^{-5t}e^{-2jt}e^{-j\omega t}\,dt\, $

$ \,\mathcal{X}(\omega)=1/2\int_{0}^{+\infty}e^{-t(5-2j+j\omega)}\,dt + 1/2\int_{0}^{+\infty}e^{-t(5+2j+j\omega)}\,dt\, $

$ \,\mathcal{X}(\omega)=e^{-15}\int_{1}^{+\infty}e^{-(j\omega +5)t}\,dt + e^{-j(\omega +\pi)\frac{\pi}{2}}\, $

$ \,\mathcal{X}(\omega)=\left. 1/2\frac{e^{-t(5-2j+j\omega)}}{-(5-2j+j\omega)}\right]_{0}^{+\infty} + \left. 1/2\frac{e^{-t(5+2j+j\omega)}}{-(5+2j+j\omega)}\right]_{0}^{+\infty} $


$ \,\mathcal{X}(\omega)=\frac{1}{2(5-2j+j\omega)} + \frac{1}{2(5+2j+j\omega)} $


Back to Practice Problems on CT Fourier transform

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang