(Fourier series coefficients)
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier series]]
 +
 +
== Example of Computation of Fourier series of a CT SIGNAL ==
 +
A [[Signals_and_systems_practice_problems_list|practice problem on "Signals and Systems"]]
 +
----
 +
 
= Fourier series coefficients for CT signal =
 
= Fourier series coefficients for CT signal =
 
===CT Signal===
 
===CT Signal===
Line 7: Line 16:
 
:<math>\, x(t)=\frac{3e^{j6t}}{j}-\frac{3e^{-j6t}}{j}</math><br><br>
 
:<math>\, x(t)=\frac{3e^{j6t}}{j}-\frac{3e^{-j6t}}{j}</math><br><br>
 
:<math>\, a_1 = \frac{3}{j}\ ,\  a_{-1} = \frac{-3}{j}</math>
 
:<math>\, a_1 = \frac{3}{j}\ ,\  a_{-1} = \frac{-3}{j}</math>
 +
 +
----
 +
[[Signals_and_systems_practice_problems_list|Back to Practice Problems on Signals and Systems]]

Revision as of 09:35, 16 September 2013


Example of Computation of Fourier series of a CT SIGNAL

A practice problem on "Signals and Systems"


Fourier series coefficients for CT signal

CT Signal

$ \, x(t)=6sin(6t) $

Fourier series coefficients

$ x(t)=\sum_{k=-\infty}^\infty a_k e^{jk\omega_0 t} $

$ \, x(t)=6sin(6t) = 6\cdot\frac{e^{j6t}-e^{-j6t}}{2j}=\frac{3(e^{j6t}-e^{-j6t})}{j} $

$ \, x(t)=\frac{3e^{j6t}}{j}-\frac{3e^{-j6t}}{j} $

$ \, a_1 = \frac{3}{j}\ ,\ a_{-1} = \frac{-3}{j} $

Back to Practice Problems on Signals and Systems

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva