Line 6: Line 6:
  
  
== ECE438 Course Notes January 16, 2009 ==
+
== [[ECE_438_Spring_2009_mboutin_Course_Notes|Course Notes]], January 16, 2009 ==
 +
[[ECE438_%28BoutinSpring2009%29|ECE438, Spring 2009]]
  
 
<p><strong>Todays Goals</strong>
 
<p><strong>Todays Goals</strong>

Latest revision as of 05:43, 16 September 2013


Course Notes, January 16, 2009

ECE438, Spring 2009

Todays Goals

  • Signal Characteristics
  • Signal Transformations
  • Special Signals
  • Singularity Functions

right sided signal:
$ \exists t_{min} (n_{min}) $ such that $ x(t) = 0 $ when $ t < t_{min} $

left sided signal:
$ \exists t_{max} (n_{max}) $ such that $ x(t) = 0 $ when $ t > t_{max} $
if $ t_{max} \leq 0 $ we say the signal is anticausal

two sided (mixed causal):
neither left sided nor right sided

Finite Duration Signal:
both right and left sided, $ \exists t_{min},t_{max} $ such that $ x(t) = 0 $ for $ t > t_{max} $ and $ t < t_{min} $

Signal Metrics


  • Signal Energy
    • $ E_x = \int_{-\infty}^{\infty} |x(t)|^2\,dt $ for ct (continuous time)

      $ E_x = \sum_{n=-\infty}^{\infty} |x(n)|^2 $ for dt (discrete time)

  • Signal Power
    • $ P_x = \lim_{T \Rightarrow \infty}\frac{1}{2T}\int_{-T}^{T} |x(t)|^2\,dt $ for ct (continuous time)

      $ P_x = \lim_{N \Rightarrow \infty}\sum_{n=-N}^{N} |x(n)|^2 $ for dt (discrete time)

      note: for periodic signals
      $ P_x = \frac{1}{N}\sum_{n=0}^{N-1}|x(n)|^2 $

  • Signal RMS (root-mean-square)
    • $ X_{rms} = \sqrt{P_x} $
  • Signal Magnitude
    • $ m_x = max|x(t)| $, for CT

      $ m_x = max|x(n)| $, for DT

      if $ m_x < \infty $, we say signal is bounded

  • Scaling ($ y(t) = x(\frac{t}{a}) $)
    • note: y(0) = x(0), fixed point at t=0
      if a > 1, graph will narrow
      if a < 1, graph will expand

      if a>1 will not work for digital signals


      Down Sampler:
      $ y(n) = x(Dn) $, D = integer > 1
      $ x(n) \Rightarrow D\Downarrow \Rightarrow y(n) $

      Up Sampler: $ x(n) \Rightarrow D\Uparrow \Rightarrow y(n) $
      $ y(n) = x(\frac{n}{D}) $, if n/D is an integer

      Scaling and Shifting $ y(t) = x(\frac{t}{a}-t_0) $
      note: $ y(0) = x(-t_0) $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett