Line 16: Line 16:
 
----
 
----
 
===Answer 1===
 
===Answer 1===
Write it here.
+
alec green
 +
 
 +
[[Image:Green26_ece438_hmwrk3_power_series.png| 480x320px]]
 +
 
 +
<math>X(z) = \sum_{n=-\infty}^{+\infty} x[n]z^{-n}</math>
 +
 
 +
<math>= \sum_{n=-3}^{+\infty} 3^{n}z^{-n}</math>
 +
 
 +
<math>= \sum_{n=-3}^{+\infty} (\frac{3}{z})^{n}</math>
 +
 
 +
Let k = n+3:
 +
 
 +
<math>= \sum_{k=0}^{+\infty} (\frac{3}{z})^{k-3}</math>
 +
 
 +
Using the geometric series property:
 +
 
 +
<math>
 +
X(z) = \left\{
 +
  \begin{array}{l l}
 +
    (\frac{z}{3})^3 \frac{1}{1-\frac{3}{z}} & \quad |z| > 3\\
 +
    \text{diverges} & \quad \text{else}
 +
  \end{array} \right.
 +
</math>
 +
 
 
=== Answer 2===
 
=== Answer 2===
 
Write it here.
 
Write it here.

Revision as of 12:45, 12 September 2013


Practice Problem on Z-transform computation

Compute the compute the z-transform (including the ROC) of the following DT signal:

$ x[n]=3^n u[n+3] \ $

(Write enough intermediate steps to fully justify your answer.)


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

alec green

Green26 ece438 hmwrk3 power series.png

$ X(z) = \sum_{n=-\infty}^{+\infty} x[n]z^{-n} $

$ = \sum_{n=-3}^{+\infty} 3^{n}z^{-n} $

$ = \sum_{n=-3}^{+\infty} (\frac{3}{z})^{n} $

Let k = n+3:

$ = \sum_{k=0}^{+\infty} (\frac{3}{z})^{k-3} $

Using the geometric series property:

$ X(z) = \left\{ \begin{array}{l l} (\frac{z}{3})^3 \frac{1}{1-\frac{3}{z}} & \quad |z| > 3\\ \text{diverges} & \quad \text{else} \end{array} \right. $

Answer 2

Write it here.

Answer 3

Write it here.

Answer 4

Write it here.


Back to ECE438 Fall 2013 Prof. Boutin

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison