Line 1: | Line 1: | ||
− | |||
[[Category:MA598RSummer2009pweigel]] | [[Category:MA598RSummer2009pweigel]] | ||
[[Category:MA598]] | [[Category:MA598]] | ||
[[Category:math]] | [[Category:math]] | ||
[[Category:problem solving]] | [[Category:problem solving]] | ||
+ | [[Category:real analysis]] | ||
== Problem #7.9, MA598R, Summer 2009, Weigel == | == Problem #7.9, MA598R, Summer 2009, Weigel == |
Latest revision as of 04:55, 11 June 2013
Problem #7.9, MA598R, Summer 2009, Weigel
Back to The Pirate's Booty
Given that $ f\in L^1(\mathbb{R}) $ and $ \int_{\mathbb{R}}\int_{\mathbb{R}}f(4x)f(x+y)dxdy = 1 $. Calculate $ \int_{\mathbb{R}}f(x)dx $
Proof: Since $ \mathbb{R} $ is $ \sigma $-finite we can apply Fubini's Theorem. Hence,
$ \int_{\mathbb{R}}\int_{\mathbb{R}}f(4x)f(x+y)dxdy =\int_{\mathbb{R}}f(4x)\bigg(\int_{\mathbb{R}}f(x+y)dy\bigg)dx= $ $ \int_{\mathbb{R}}f(4x)dx\cdot \int_{\mathbb{R}}f(y')dy'=\frac{1}{4}\int_{\mathbb{R}}f(x')dx'\cdot \int_{\mathbb{R}}f(y')dy'= $ $ \frac{1}{4}\bigg(\int_{\mathbb{R}}f(x)dx\bigg)^2 = 1 $
$ \Rightarrow \int_{\mathbb{R}}f(x)dx =\pm 2 $