(New page: Back to The Pirate's Booty Given that <math>f\in L^1(\mathbb{R})</math> and <math>\int_{\mathbb{R}}\int_{\mathbb{R}}f(4x)f(x+y)dxdy = 1</math>. Calculate <math>\int_{\mathbb{R}}f(x)d...) |
|||
Line 1: | Line 1: | ||
+ | |||
+ | [[Category:MA598RSummer2009pweigel]] | ||
+ | [[Category:MA598]] | ||
+ | [[Category:math]] | ||
+ | [[Category:problem solving]] | ||
+ | |||
+ | == Problem #7.9, MA598R, Summer 2009, Weigel == | ||
Back to [[The Pirate's Booty]] | Back to [[The Pirate's Booty]] | ||
Line 12: | Line 19: | ||
<math>\Rightarrow \int_{\mathbb{R}}f(x)dx =\pm 2</math> | <math>\Rightarrow \int_{\mathbb{R}}f(x)dx =\pm 2</math> | ||
+ | ---- | ||
+ | [[The_Pirate%27s_Booty|Back to the Pirate's Booty]] | ||
+ | |||
+ | [[MA_598R_pweigel_Summer_2009_Lecture_7|Back to Assignment 7]] | ||
+ | |||
+ | [[MA598R_%28WeigelSummer2009%29|Back to MA598R Summer 2009]] |
Revision as of 04:38, 11 June 2013
Problem #7.9, MA598R, Summer 2009, Weigel
Back to The Pirate's Booty
Given that $ f\in L^1(\mathbb{R}) $ and $ \int_{\mathbb{R}}\int_{\mathbb{R}}f(4x)f(x+y)dxdy = 1 $. Calculate $ \int_{\mathbb{R}}f(x)dx $
Proof: Since $ \mathbb{R} $ is $ \sigma $-finite we can apply Fubini's Theorem. Hence,
$ \int_{\mathbb{R}}\int_{\mathbb{R}}f(4x)f(x+y)dxdy =\int_{\mathbb{R}}f(4x)\bigg(\int_{\mathbb{R}}f(x+y)dy\bigg)dx= $ $ \int_{\mathbb{R}}f(4x)dx\cdot \int_{\mathbb{R}}f(y')dy'=\frac{1}{4}\int_{\mathbb{R}}f(x')dx'\cdot \int_{\mathbb{R}}f(y')dy'= $ $ \frac{1}{4}\bigg(\int_{\mathbb{R}}f(x)dx\bigg)^2 = 1 $
$ \Rightarrow \int_{\mathbb{R}}f(x)dx =\pm 2 $