(New page: Climb a secret fortress' wall back to The_Ninja's_Solutions Show that <math>\int_{\mathbb{R}^n}e^{-|x|^{2}}dx=\pi^{n/2}</math> ---- By induction * Case <math>n=1</math>: Use Rie...)
 
Line 1: Line 1:
 +
[[Category:MA598RSummer2009pweigel]]
 +
[[Category:MA598]]
 +
[[Category:math]]
 +
[[Category:problem solving]]
 +
 +
== Problem #7.3, MA598R, Summer 2009, Weigel ==
 
Climb a secret fortress' wall back to [[The_Ninja%27s_Solutions]]
 
Climb a secret fortress' wall back to [[The_Ninja%27s_Solutions]]
  
Line 36: Line 42:
  
 
~Ben Bartle
 
~Ben Bartle
 +
----
 +
[[The_Ninja%27s_Solutions|Back to Ninja Solutions]]
 +
 +
[[MA_598R_pweigel_Summer_2009_Lecture_7|Back to Assignment 7]]
 +
 +
[[MA598R_%28WeigelSummer2009%29|Back to MA598R Summer 2009]]

Revision as of 04:30, 11 June 2013


Problem #7.3, MA598R, Summer 2009, Weigel

Climb a secret fortress' wall back to The_Ninja's_Solutions

Show that $ \int_{\mathbb{R}^n}e^{-|x|^{2}}dx=\pi^{n/2} $


By induction

  • Case $ n=1 $:

Use Riemman integration since we know this is Riemann integrable, hence the Lebesgue integral will be the same as the Riemman integral.

$ (\int_{\mathbb{R}}e^{-x^{2}}dx)^{2} = $

$ = \int_{\mathbb{R}}e^{-x^{2}}dx\int_{\mathbb{R}}e^{-y^{2}}dy $

$ = \int_{\mathbb{R}}\int_{\mathbb{R}}e^{-x^{2}-y^{2}}dxdy $

$ = \int_{0}^{2\pi}\int_{0}^{\infty}e^{-r^{2}}rdrd\theta $

$ = \int_{0}^{2\pi}d\theta\int_{0}^{\infty}re^{-r^{2}}dr $

$ = (2\pi)(\dfrac{1}{2}) = \pi $

Hence $ \int_{\mathbb{R}}e^{-x^{2}}dx = \pi^{1/2} $

  • Assume the statement is true for all $ k < n $
  • Case $ n $:

$ \int_{\mathbb{R}^n}e^{-|x|^{2}}dx = $

$ = \int_{\mathbb{R}^{n-1}}\int_{\mathbb{R}}e^{-x_{1}^{2}-x_{2}^{2}...-x_{n}^{2}}dx_{1}dx_{2...n} $ by Tonelli since $ \mathbb{R}^n $ is $ \sigma $-finite for all $ n $ and the integrand is $ \ge 0 $. $ dx_{2...n} $ represents the measure on $ \mathbb{R}^{n-1} $

$ = \int_{\mathbb{R}^{n-1}}-x_{2}^{2}...-x_{n}^{2}dx_{2...n} \int_{\mathbb{R}}e^{-x_{1}^{2}}dx_{1} = (\pi^{(n-1)/2})(\pi^{1/2}) = \pi^{n/2} $ using the case $ n=1 $ and the induction hypothesis.

~Ben Bartle


Back to Ninja Solutions

Back to Assignment 7

Back to MA598R Summer 2009

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn