m
Line 3: Line 3:
 
In its most basic form, the rank nullity theorem states that for the [[Linear_transformation|linear transformation]] T represented by the m by n matrix A, then <math>\text{rank}(A)+\text{nullity}(A)=m</math>.  Where rank is the number of rows in A with leading ones and nullity is the number of rows without leading ones.  Nullity also happens to be the dimension of the [[Kernel_(linear_algebra)|kernel]] of A and the rank is the dimension of the [[Image_(linear_algebra)|image]] of A.  Therefore the rank nullity theorem can be re-written as <math>\text{dim}(\text{im}(A))+\text{dim}(\text{ker}(A))=m</math> where <math>\text{im}(A)</math> is the [[Image_(linear_algebra)|image of the matrix]] A, and <math>\text{ker}(A)</math> is the [[Kernel_(linear_algebra)|kernel of the matrix]]  A.
 
In its most basic form, the rank nullity theorem states that for the [[Linear_transformation|linear transformation]] T represented by the m by n matrix A, then <math>\text{rank}(A)+\text{nullity}(A)=m</math>.  Where rank is the number of rows in A with leading ones and nullity is the number of rows without leading ones.  Nullity also happens to be the dimension of the [[Kernel_(linear_algebra)|kernel]] of A and the rank is the dimension of the [[Image_(linear_algebra)|image]] of A.  Therefore the rank nullity theorem can be re-written as <math>\text{dim}(\text{im}(A))+\text{dim}(\text{ker}(A))=m</math> where <math>\text{im}(A)</math> is the [[Image_(linear_algebra)|image of the matrix]] A, and <math>\text{ker}(A)</math> is the [[Kernel_(linear_algebra)|kernel of the matrix]]  A.
  
I think that it should be "n by m" matrix, meaning that rank(A) + nullity(A)= m (number of columns, not rows as it states here)!!  
+
*I think that it should be "n by m" matrix, meaning that rank(A) + nullity(A)= m (number of columns, not rows as it states here)!!  
 
+
 
----
 
----
 
[[Linear_Algebra_Resource|Back to Linear Algebra Resource]]
 
[[Linear_Algebra_Resource|Back to Linear Algebra Resource]]
  
 
[[MA351|Back to MA351]]
 
[[MA351|Back to MA351]]

Revision as of 09:45, 20 May 2013

Rank Nullity Theorem

In its most basic form, the rank nullity theorem states that for the linear transformation T represented by the m by n matrix A, then $ \text{rank}(A)+\text{nullity}(A)=m $. Where rank is the number of rows in A with leading ones and nullity is the number of rows without leading ones. Nullity also happens to be the dimension of the kernel of A and the rank is the dimension of the image of A. Therefore the rank nullity theorem can be re-written as $ \text{dim}(\text{im}(A))+\text{dim}(\text{ker}(A))=m $ where $ \text{im}(A) $ is the image of the matrix A, and $ \text{ker}(A) $ is the kernel of the matrix A.

  • I think that it should be "n by m" matrix, meaning that rank(A) + nullity(A)= m (number of columns, not rows as it states here)!!

Back to Linear Algebra Resource

Back to MA351

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch