Line 4: Line 4:
 
[[Category:lecture notes]]
 
[[Category:lecture notes]]
  
=[[MA375]]: The Principle of Induction=
+
=[[MA375]]: Lecture Notes=
Lecture Notes
+
Fall 2008, Prof. Walther
 
----  
 
----  
 +
==Some Definitions==
  
 
If '''E''' and '''F''' are events in '''S''' (sample space) the  the conditional probability of '''E''' and '''F''' is '''P(E|F) = P(E intersect F)'''.
 
If '''E''' and '''F''' are events in '''S''' (sample space) the  the conditional probability of '''E''' and '''F''' is '''P(E|F) = P(E intersect F)'''.

Latest revision as of 07:16, 20 May 2013


MA375: Lecture Notes

Fall 2008, Prof. Walther


Some Definitions

If E and F are events in S (sample space) the the conditional probability of E and F is P(E|F) = P(E intersect F).

Further :

         the conditional probability of "E" given "F" is =$  \frac {P(EnF)}{P(F)} $

defn: if P(E|F) = P(E) , then E and F are independent events otherwise they are dependant events.

           note: independence implies that  $  P(E)= P(E|F) = \frac {P(EnF)}{P(F)} $
                    
                      or P(E).P(F)=P(EnF).
           note : if P(E|F) = P(E)
                               then P(F|E) = P(F)

Back to MA375, Fall 2008, Prof. Walther

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett