Line 36: Line 36:
 
=Accompanying Lecture Notes=
 
=Accompanying Lecture Notes=
  
 +
----
 +
 +
* Define the counter-clockwise rotation matrix
 +
 +
<math>\begin{bmatrix}
 +
\cos(\theta) & -\sin(\theta) \\
 +
\sin(\theta) & \cos(\theta)
 +
\end{bmatrix}</math>
 +
 +
* Define the new coordinate system <math>(r,z)</math>
 +
<math>\begin{bmatrix}
 +
x \\
 +
y
 +
\end{bmatrix} = A_{\theta}\begin{bmatrix}
 +
r \\
 +
z
 +
\end{bmatrix}
 +
</math>
 +
 +
 +
 +
[[Image:CR_fig1.png|400px|thumb|left|Fig 1: Geometric Interpretation]]
 +
 +
 +
* Inverse Transformation
 +
<math>\begin{bmatrix}
 +
r \\
 +
z
 +
\end{bmatrix} = A_{-\theta}\begin{bmatrix}
 +
x \\
 +
y
 +
\end{bmatrix}
 +
</math>
  
 
----
 
----

Revision as of 15:49, 9 May 2013

sLecture

Topic 2: Tomographic Reconstruction
Intro
CT
PET
Co-ordinate Rotation


The Bouman Lectures on Image Processing

A sLecture by Maliha Hossain

Subtopic 3: Co-ordinate Rotation

© 2013




Excerpt from Prof. Bouman's Lecture


Accompanying Lecture Notes


  • Define the counter-clockwise rotation matrix

$ \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} $

  • Define the new coordinate system $ (r,z) $

$ \begin{bmatrix} x \\ y \end{bmatrix} = A_{\theta}\begin{bmatrix} r \\ z \end{bmatrix} $


Fig 1: Geometric Interpretation


  • Inverse Transformation

$ \begin{bmatrix} r \\ z \end{bmatrix} = A_{-\theta}\begin{bmatrix} x \\ y \end{bmatrix} $


References

  • C. A. Bouman. ECE 637. Class Lecture. Digital Image Processing I. Faculty of Electrical Engineering, Purdue University. Spring 2013.



Questions and comments

If you have any questions, comments, etc. please post them on this page



Back to the "Bouman Lectures on Image Processing" by Maliha Hossain

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett