Line 26: | Line 26: | ||
Example #1: Let's take the Transformation: | Example #1: Let's take the Transformation: | ||
− | <font size= | + | <font size=4><math>T(u,v) = <u * \cos v,r * \sin v> </math> </font>. |
What would be the Jacobian Matrix of this Transformation? | What would be the Jacobian Matrix of this Transformation? | ||
Line 34: | Line 34: | ||
<math> | <math> | ||
− | x=u*\cos v \longrightarrow \frac{\partial x}{\partial u}= \cos v | + | x=u*\cos v \longrightarrow \frac{\partial x}{\partial u}= \cos v \; \frac{\partial x}{\partial v} = -u*\sin v |
− | y=u*\sin v \longrightarrow \frac{\partial y}{\partial u}= \sin v | + | y=u*\sin v \longrightarrow \frac{\partial y}{\partial u}= \sin v \; \frac{\partial y}{\partial v} = u*\cos v |
</math> | </math> | ||
Line 54: | Line 54: | ||
---- | ---- | ||
− | |||
− |
Revision as of 08:26, 8 May 2013
Jacobians and their applications
by Joseph Ruan
Basic Definition
The Jacobian Matrix is just a matrix that takes the partial derivatives of each element of a function (which is in the form of a vector. Let F be a function such that
$ F(u,v)=<x,y> $
then the Jacobian matrix of this function would look like this:
$ J(u,v)=\begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{bmatrix} $
To help illustrate this, let's do an example:
Example #1: Let's take the Transformation:
$ T(u,v) = <u * \cos v,r * \sin v> $ .
What would be the Jacobian Matrix of this Transformation?
Solution: Note that $ x=u*\cos v \longrightarrow \frac{\partial x}{\partial u}= \cos v \; \frac{\partial x}{\partial v} = -u*\sin v y=u*\sin v \longrightarrow \frac{\partial y}{\partial u}= \sin v \; \frac{\partial y}{\partial v} = u*\cos v $
Therefore the Jacobian matrix is
$ \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{bmatrix}= \begin{bmatrix} \cos v & -u*\sin v \\ \sin v & u*\cos v \end{bmatrix} $
Now after doing