(z transform problem)
 
 
Line 1: Line 1:
 
Find the inverse Z transform of H(z)= Y(z)/X(z)= 1 / (1-a*z^(-1))
 
Find the inverse Z transform of H(z)= Y(z)/X(z)= 1 / (1-a*z^(-1))
 +
<br>
 
Solution:
 
Solution:
 +
<br>
 
Y(z)=a*z^(-1)Y(z) + X(z)
 
Y(z)=a*z^(-1)Y(z) + X(z)
 +
<br>
 
y(m) = a * y(m-k) + x(m)
 
y(m) = a * y(m-k) + x(m)
 +
<br>
 
y(m)= a^m at m>=0
 
y(m)= a^m at m>=0
 +
<br>
 
0 when m<0
 
0 when m<0
 +
<br>
  
 
[[Back to Final Exam Sp 2005 solutions, ECE301 Spring 2013]]
 
[[Back to Final Exam Sp 2005 solutions, ECE301 Spring 2013]]

Latest revision as of 04:05, 3 May 2013

Find the inverse Z transform of H(z)= Y(z)/X(z)= 1 / (1-a*z^(-1))
Solution:
Y(z)=a*z^(-1)Y(z) + X(z)
y(m) = a * y(m-k) + x(m)
y(m)= a^m at m>=0
0 when m<0

Back to Final Exam Sp 2005 solutions, ECE301 Spring 2013

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison