Line 14: Line 14:
 
= Discrete Fourier Transform =
 
= Discrete Fourier Transform =
 
Please help building this page!
 
Please help building this page!
*You can copy and paste the formulas from these pages:
+
*You can copy and paste the formulas from this page:
 
**[[Student_summary_Discrete_Fourier_transform_ECE438F09]]
 
**[[Student_summary_Discrete_Fourier_transform_ECE438F09]]
**[[Discrete_Time_Fourier_Transform_Properties_(DTFT)_-_Mohammed_Almathami]]
 
  
 
{|
 
{|

Revision as of 05:47, 21 April 2013

Collective Table of Formulas

Discrete Fourier transforms (DFT)

click here for more formulas



Discrete Fourier Transform

Please help building this page!

Discrete Fourier Transform Pairs and Properties (info)
Definition Discrete Fourier Transform and its Inverse
Let x[n] be a periodic DT signal, with period N.
N-point Discrete Fourier Transform $ X [k] = \sum_{n=0}^{N-1} x[n]e^{-j 2\pi \frac{k n}{N}} \, $
Inverse Discrete Fourier Transform $ \,x [n] = (1/N) \sum_{k=0}^{N-1} X[k] e^{j 2\pi\frac{kn}{N}} \, $
Discrete Fourier Transform Pairs (info)
$ x[n] \ \text{ (period } N) $ $ \longrightarrow $ $ X_N[k] \ \ (N \text{ point DFT)} $
$ \ \sum_{k=-\infty}^\infty \delta[n+Nk] = \left\{ \begin{array}{ll} 1, & \text{ if } n=0, \pm N, \pm 2N , \ldots\\ 0, & \text{ else.} \end{array}\right. $ $ \ 1 \text{ (period } N) $
$ \ 1 \text{ (period } N) $ $ \ N\sum_{m=-\infty}^\infty \delta[k+Nm] = \left\{ \begin{array}{ll} N, & \text{ if } n=0, \pm N, \pm 2N , \ldots\\ 0, & \text{ else.} \end{array}\right. $
$ \ e^{j2\pi k_0 n} $ $ \ N\delta[((k - k_0))_N] $
$ \ \cos(\frac{2\pi}{N}k_0n) $ $ \ \frac{N}{2}(\delta[((k - k_0))_N] + \delta[((k+k_0))_N]) $
Discrete Fourier Transform Properties
$ x[n] \ $ $ \longrightarrow $ $ X[k] \ $
Linearity $ ax[n]+by[n] \ $ $ aX[k]+bY[k] \ $
Circular Shift $ x[((n-m))_N] \ $ $ X[k]e^{(-j\frac{2 \pi}{N}km)} \ $
Duality $ X[n] \ $ $ NX[((-k))_N] \ $
Multiplication $ x[n]y[n] \ $ $ \frac{1}{N} X[k]\circledast Y[k], \ \circledast \text{ denotes the circular convolution} $
Convolution $ x(t) \circledast y(t) \ $ $ X[k]Y[k] \ $
$ \ x^*[n] $ $ \ X^*[((-k))_N] $
$ \ x^*[((-n))_N] $ $ \ X^*[k] $
$ \ \Re\{x[n]\} $ $ \ X_{ep}[k] = \frac{1}{2}\{X[((k))_N] + X^*[((-k))_N]\} $
$ \ j\Im\{x[n]\} $ $ \ X_{op}[k] = \frac{1}{2}\{X[((k))_N] - X^*[((-k))_N]\} $
$ \ x_{ep}[n] = \frac{1}{2}\{x[n] + x^*[((-n))_N]\} $ $ \ \Re\{X[k]\} $
$ \ x_{op}[n] = \frac{1}{2}\{x[n] - x^*[((-n))_N]\} $ $ \ j\Im\{X[k]\} $
Other Discrete Fourier Transform Properties
Parseval's Theorem $ \sum_{n=0}^{N-1}|x[n]|^2 = \frac{1}{N} \sum_{k=0}^{N-1}|X[k]|^2 $

Go to Relevant Course Page: ECE 438

Go to Relevant Course Page: ECE 538

Back to Collective Table

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal