Line 1: Line 1:
<div style="font-family: Verdana, sans-serif; font-size: 14px; text-align: center; width: 70%; margin: auto; border: 1px solid #aaa; padding: 1em; text-align:center;">
+
[[Category:Formulas]]
{|
+
|-
+
|
+
'''This [[Collective Table of Formulas|Collective table of formulas]] is proudly sponsored'''<br> '''by the [http://www.facebook.com/hkn.beta Nice Guys of Eta Kappa Nu].''' <br><br> Visit us at the [[HKN|HKN Lounge]] in EE24 for hot coffee and fresh bagels only $1 each!
+
  
| &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;[[Image:HKNlogo.jpg]]
+
<center><font size= 4>
|}
+
'''[[Collective_Table_of_Formulas|Collective Table of Formulas]]'''
</div>  
+
</font size>
  
 +
click [[Collective_Table_of_Formulas|here]] for [[Collective_Table_of_Formulas|more formulas]]
 +
 +
</center>
 +
 +
----
  
 
{|
 
{|

Revision as of 11:41, 19 April 2013


Collective Table of Formulas

click here for more formulas


Basic Signals and Functions in one variable
Continuous-time signals.
sinc function $ sinc(t )=\frac{sin(\pi t )}{\pi\theta}, \text{ where }t\in {\mathbb R} $
rect function $ rect (t) = \left\{ \begin{array}{ll}1, & \text{ for } |t|\leq \frac{1}{2} \\ 0, & \text{ else}\end{array}\right., \text{ where }t\in {\mathbb R} $
CT unit step function $ u(t)=\left\{ \begin{array}{ll}1, & \text{ for } t\geq 0 \\ 0, & \text{ else}\end{array}\right., \text{ where }t\in {\mathbb R} $
Discrete-time signals
DT delta function $ \delta[n]=\left\{ \begin{array}{ll}1, & \text{ for } n=1 \\ 0, & \text{ else}\end{array}\right., \text{ where }n\in {\mathbb Z} $
DT unit step function $ u[n]=\left\{ \begin{array}{ll}1, & \text{ for } n\geq 0 \\ 0, & \text{ else}\end{array}\right., \text{ where }n\in {\mathbb Z} $
Basic Signals and Functions in two variables
Continuous-time

(info) 2D sinc dirac delta

$ \delta(x,y)=\delta(x) \delta(y), \text{ where }x,y\in {\mathbb R} $

(info) 2D sinc function

$ sinc(x,y)=\frac{sin(\pi x)sin(\pi y)}{(\pi\theta)^2}, \text{ where }x,y\in {\mathbb R} $

(info) 2D rect function

$ rect(x,y)= \left\{ \begin{array}{ll}1, & \text{ for } |x|\leq \frac{1}{2} \text{ and } |y|\leq \frac{1}{2} \\ 0, & \text{ else}\end{array}\right., \text{ where }x,y\in {\mathbb R} $

Go to Relevant Course Page: ECE 301

Go to Relevant Course Page: ECE 438

Go to Relevant Course Page: ECE 538

Back to Collective Table

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett