Line 27: Line 27:
 
: <math>\int_{-\infty}^{\infty} f_{X}(x)dx =1.</math>
 
: <math>\int_{-\infty}^{\infty} f_{X}(x)dx =1.</math>
 
: <math>f_{X|A}(x|A)= \frac{f_{X}(x)}{P({X>3})} = \frac{f_{X}(x)}{1- F_{X}(3)} .</math> -TA
 
: <math>f_{X|A}(x|A)= \frac{f_{X}(x)}{P({X>3})} = \frac{f_{X}(x)}{1- F_{X}(3)} .</math> -TA
 +
 +
===Comment on Hint===
 +
: <span style='color:blue'>It's important to note that the <math>\color{blue} f_X(x)</math> given in the final line of the hint is distinct from the pdf given in the problem statement.  Specifically, the new <math>\color{blue} f_X(x)</math> is nonzero only on the range that the event A guarantees such that</span>
 +
 +
:<math>\color{blue}
 +
f_X(x)=\left\{
 +
\begin{array}{ll}
 +
c x^2, & 3<x<5,\\
 +
0, & \text{ else}.
 +
\end{array}
 +
\right.</math>
 +
 +
:<span style='color:blue'>Note that this is 'new' <math>\color{blue} f_X(x)</math> is not a valid pdf by itself (violates normalization to 1 axiom), and thus the normalizing denominator is used.</span>
 
===Answer 2===
 
===Answer 2===
 
Write it here.
 
Write it here.

Revision as of 16:52, 26 March 2013

Practice Problem: What is the conditional density function


Let X be a continuous random variable with probability density function

$ f_X(x)=\left\{ \begin{array}{ll} c x^2, & 1<x<5,\\ 0, & \text{ else}. \end{array} \right. $

Let A be the event $ \{ X>3 \} $. Find the conditional probability density function $ f_{X|A}(x|A). $


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

Hint:

Find c by,
$ \int_{-\infty}^{\infty} f_{X}(x)dx =1. $
$ f_{X|A}(x|A)= \frac{f_{X}(x)}{P({X>3})} = \frac{f_{X}(x)}{1- F_{X}(3)} . $ -TA

Comment on Hint

It's important to note that the $ \color{blue} f_X(x) $ given in the final line of the hint is distinct from the pdf given in the problem statement. Specifically, the new $ \color{blue} f_X(x) $ is nonzero only on the range that the event A guarantees such that
$ \color{blue} f_X(x)=\left\{ \begin{array}{ll} c x^2, & 3<x<5,\\ 0, & \text{ else}. \end{array} \right. $
Note that this is 'new' $ \color{blue} f_X(x) $ is not a valid pdf by itself (violates normalization to 1 axiom), and thus the normalizing denominator is used.

Answer 2

Write it here.

Answer 3

Write it here.


Back to ECE302 Spring 2013 Prof. Boutin

Back to ECE302

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett