Line 29: Line 29:
 
2. Example of graphical convolution.  
 
2. Example of graphical convolution.  
  
...  
+
[https://engineering.purdue.edu/Intranet/Users/naputt.areethamsirikul.1/convolution_graphic.jpg engineering.purdue.edu/Intranet/Users/naputt.areethamsirikul.1/convolution_graphic.jpg]<br>
  
 
<br>  
 
<br>  
Line 35: Line 35:
 
3. Example question related to fundamental period.  
 
3. Example question related to fundamental period.  
  
<span class="texhtml">''x''[''n''] = ( − 1)<sup>''n''</sup> * ''c''''o''''s''(''p''''i'''''<b> * ''n'' − ''p'''</b>''i'' / 2)) + ''c''''o''''s''[''p''''i'''''<b> * ''n''] * ''s'''</b>''i''''n'''''<b>[''p'''</b>''i'' * ''n'']</span><br>  
+
<span class="texhtml">''x''[''n''] = ( − 1)<sup>''n''</sup> * ''cos(''pi'' * ''n'' − ''p''i'' / 2)) + ''cos''[''pi'' * ''n''] * ''s''in''[''p''i'' * ''n'']</span><br>  
  
 
The first term is always zero because of the cosine. The second term uses trigonometric properties to convert it to sin(2pi*n)/2 whose period is 1.<br>Fundamental period = 1  
 
The first term is always zero because of the cosine. The second term uses trigonometric properties to convert it to sin(2pi*n)/2 whose period is 1.<br>Fundamental period = 1  
  
 
[[Category:LTI_systems]] [[Category:Convolution]] [[Category:Period]] [[Category:ECE301Spring2013JVK]] [[Category:ECE]] [[Category:ECE301]] [[Category:Probability]] [[Category:Problem_solving]]
 
[[Category:LTI_systems]] [[Category:Convolution]] [[Category:Period]] [[Category:ECE301Spring2013JVK]] [[Category:ECE]] [[Category:ECE301]] [[Category:Probability]] [[Category:Problem_solving]]

Revision as of 08:05, 11 February 2013


1. Impulse response examples for each of the following systems : linear and non-linear, causal and non-causal, with and without memory, invertible/non-invertible, stable/non-stable, time variant and time invariant.

Linear: y[n] = 2x[3n − 4] + ( − 1)n * x[n]

Nonlinear: y(t) = x2[t]

Causal: h(t) = (t − 1) * u(t − 1)

Noncausal: h(t) = ln( − t)

With memory: h(t) = 1 − u(t + 1)

Without memory: h[n] = u[n] − u[n − 1]

Invertible: h(t) = 2u(t − 5)

Noninvertible: y[n] = cos(x[n])

Stable: h(t) = [e-t]u(t)

Nonstable: y(t) = d/dt x(t)

Time variant: y[n] = n * x[n − 1]

Time invariant: y[n] = ( − j)n * x[n]


2. Example of graphical convolution.

engineering.purdue.edu/Intranet/Users/naputt.areethamsirikul.1/convolution_graphic.jpg


3. Example question related to fundamental period.

x[n] = ( − 1)n * cos(pi * npi / 2)) + cos[pi * n] * sin[pi * n]

The first term is always zero because of the cosine. The second term uses trigonometric properties to convert it to sin(2pi*n)/2 whose period is 1.
Fundamental period = 1

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood