(New page: <br> 1. Impulse response examples for each of the following systems : linear and non-linear, causal and non-causal, with and without memory, invertible/non-invertible, stable/non-stab...)
 
Line 7: Line 7:
 
Causal:&nbsp;<span class="texhtml">''h''(''t'') = (''t'' − 1) * ''u''(''t'' − 1)</span>  
 
Causal:&nbsp;<span class="texhtml">''h''(''t'') = (''t'' − 1) * ''u''(''t'' − 1)</span>  
  
Noncausal:&nbsp;<span class="texhtml">''h''(''t'') = ''l''''n''( − ''t'')</span>  
+
Noncausal:&nbsp;<span class="texhtml">''h''(''t'') = ''ln''( − ''t'')</span>  
  
 
With memory:&nbsp;<span class="texhtml">''h''(''t'') = 1 − ''u''(''t'' + 1)</span>  
 
With memory:&nbsp;<span class="texhtml">''h''(''t'') = 1 − ''u''(''t'' + 1)</span>  
Line 15: Line 15:
 
Invertible:&nbsp;<span class="texhtml">''h''(''t'') = 2''u''(''t'' − 5)</span>  
 
Invertible:&nbsp;<span class="texhtml">''h''(''t'') = 2''u''(''t'' − 5)</span>  
  
Noninvertible:&nbsp;<span class="texhtml">''y''[''n''] = ''c''''o''''s''(''x''[''n''])</span>  
+
Noninvertible:&nbsp;<span class="texhtml">''y''[''n''] = ''cos''(''x''[''n''])</span>  
  
Stable:&nbsp;<span class="texhtml">''h(t) = [e<sup>-t</sup>]u(t)''</span>
+
Stable:&nbsp;<span class="texhtml">''h(t) = [e<sup>-t</sup>]u(t)''</span>  
  
Nonstable:&nbsp;<span class="texhtml">''y''(''t'') = ''d''/''d''''t&nbsp;''''x''(''t'')</span>  
+
Nonstable:&nbsp;<span class="texhtml">''y''(''t'') = ''d''/''dt'''&nbsp;'''x''(''t'')</span>  
  
 
Time variant:&nbsp;<span class="texhtml">''y''[''n''] = ''n'' * ''x''[''n'' − 1]</span>  
 
Time variant:&nbsp;<span class="texhtml">''y''[''n''] = ''n'' * ''x''[''n'' − 1]</span>  
Line 29: Line 29:
 
2.&nbsp;Example of graphical convolution.  
 
2.&nbsp;Example of graphical convolution.  
  
...
+
...  
 
+
  
 +
<br>
  
 
3. Example question related to fundamental period.  
 
3. Example question related to fundamental period.  
  
<span class="texhtml">''x''[''n''] = ( − 1)<sup>''n''</sup> * ''c''''o''''s''(''p''''i'' * ''n'' − ''p''''i'' / 2)) + ''c''''o''''s''[''p''''i'' * ''n''] * ''s''''i''''n''[''p''''i'' * ''n'']</span><br>  
+
<span class="texhtml">''x''[''n''] = ( − 1)<sup>''n''</sup> * ''c''''o''''s''(''p''''i'''''<b> * ''n'' − ''p'''</b>''i'' / 2)) + ''c''''o''''s''[''p''''i'''''<b> * ''n''] * ''s'''</b>''i''''n'''''<b>[''p'''</b>''i'' * ''n'']</span><br>  
  
 
The first term is always zero because of the cosine. The second term uses trigonometric properties to convert it to sin(2pi*n)/2 whose period is 1.<br>Fundamental period = 1  
 
The first term is always zero because of the cosine. The second term uses trigonometric properties to convert it to sin(2pi*n)/2 whose period is 1.<br>Fundamental period = 1  
  
 
[[Category:LTI_systems]] [[Category:Convolution]] [[Category:Period]] [[Category:ECE301Spring2013JVK]] [[Category:ECE]] [[Category:ECE301]] [[Category:Probability]] [[Category:Problem_solving]]
 
[[Category:LTI_systems]] [[Category:Convolution]] [[Category:Period]] [[Category:ECE301Spring2013JVK]] [[Category:ECE]] [[Category:ECE301]] [[Category:Probability]] [[Category:Problem_solving]]

Revision as of 07:42, 11 February 2013


1. Impulse response examples for each of the following systems : linear and non-linear, causal and non-causal, with and without memory, invertible/non-invertible, stable/non-stable, time variant and time invariant.

Linear: y[n] = 2x[3n − 4] + ( − 1)n * x[n]

Nonlinear: y(t) = x2[t]

Causal: h(t) = (t − 1) * u(t − 1)

Noncausal: h(t) = ln( − t)

With memory: h(t) = 1 − u(t + 1)

Without memory: h[n] = u[n] − u[n − 1]

Invertible: h(t) = 2u(t − 5)

Noninvertible: y[n] = cos(x[n])

Stable: h(t) = [e-t]u(t)

Nonstable: y(t) = d/dt x(t)

Time variant: y[n] = n * x[n − 1]

Time invariant: y[n] = ( − j)n * x[n]


2. Example of graphical convolution.

...


3. Example question related to fundamental period.

x[n] = ( − 1)n * c''o's(p'i * npi / 2)) + c'o's[p'i * n] * si'n[pi * n]

The first term is always zero because of the cosine. The second term uses trigonometric properties to convert it to sin(2pi*n)/2 whose period is 1.
Fundamental period = 1

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood