Line 33: Line 33:
 
The following matrices are not in reduced row echelon form.
 
The following matrices are not in reduced row echelon form.
  
 +
<math>G=\left[\begin{array}{cccc}1&3&0&5\\0&0&0&0\\0&0&1&-7\end{array}\right]</math>
 +
 +
<math>H=\left[\begin{array}{cccc}1&0&7&-4\\0&-4&3&6\\0&0&1&2\end{array}\right]</math>
 +
 +
<math>I=\left[\begin{array}{cccc}1&0&2&3\\0&1&-2&3\\0&1&4&3\\0&0&0&0\end{array}\right]</math>
 +
 +
<math>J=\left[\begin{array}{cccc}1&6&5&2\\0&1&4&3\\0&0&1&-3\\0&0&0&0\end{array}\right]</math>
 
[[Category:MA265Fall2012Alvarado]]
 
[[Category:MA265Fall2012Alvarado]]

Revision as of 13:12, 14 December 2012

Echelon form of a matrix

A m X n matrix is in row echelon form if it satisfies properties 1, 2, and 3. Furthermore A m X n matrix is in reduced row echelon form if it satisfies the following properties:

1. If there are any zero rows, they must be at the bottom of the matrix.

2. The first nonzero entry from the left of a nonzero row is a 1, which is also called the leading one of that row.

3. The leading one for each nonzero row appears to the right and below any leading ones in the previous rows.

4. For a column with a leading one, the other entries in that column are zero.

A similar definition can be made for reduced column echelon form and column echelon form.

Example

The following matrices are in row echelon form because they follow properties 1, 2, and 3 but not property 4.

$ A=\left[\begin{array}{cccccc}1&4&0&3&-5&-7\\0&1&0&4&2&10\\0&0&0&1&-4&2\\0&0&0&0&0&0\\0&0&0&0&0&0\end{array}\right] $

$ B=\left[\begin{array}{ccccc}1&2&3&4&5\\0&0&1&3&5\\0&0&0&1&-4\\0&0&0&0&0\end{array}\right] $

$ C=\left[\begin{array}{cccc}1&-4&2&8\\0&0&1&-2\\0&0&0&0\end{array}\right] $

The following matrices are in reduced row echelon form because they follow properties 1, 2, 3, and 4.

$ D=\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right] $

$ E=\left[\begin{array}{ccccc}1&7&0&0&3\\0&0&1&-2&6\\0&0&0&0&0\end{array}\right] $

$ F=\left[\begin{array}{cccccc}1&0&0&0&-1&2\\0&1&0&0&3&5\\0&0&0&1&-4&2\\0&0&0&0&0&0\\0&0&0&0&0&0\end{array}\right] $

The following matrices are not in reduced row echelon form.

$ G=\left[\begin{array}{cccc}1&3&0&5\\0&0&0&0\\0&0&1&-7\end{array}\right] $

$ H=\left[\begin{array}{cccc}1&0&7&-4\\0&-4&3&6\\0&0&1&2\end{array}\right] $

$ I=\left[\begin{array}{cccc}1&0&2&3\\0&1&-2&3\\0&1&4&3\\0&0&0&0\end{array}\right] $

$ J=\left[\begin{array}{cccc}1&6&5&2\\0&1&4&3\\0&0&1&-3\\0&0&0&0\end{array}\right] $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva