Line 7: | Line 7: | ||
<br> | <br> | ||
<br> | <br> | ||
− | + | <math>A = \left(\begin{array}{cccc}4&3\\3&2\end{array}\right)</math> | |
<br> | <br> | ||
− | + | <math>A^{-1} = \left(\begin{array}{cccc}-2&3\\3&-4\end{array}\right)</math> | |
<br> | <br> | ||
− | + | <math>AA^{-1} = \left(\begin{array}{cccc}4&3\\3&2\end{array}\right)</math><math>\left(\begin{array}{cccc}-2&3\\3&-4\end{array}\right) = </math> <math>\left(\begin{array}{cccc}1&0\\0&1\end{array}\right)</math> | |
<br> | <br> | ||
− | and A | + | <math>and A^{-1} = \left(\begin{array}{cccc}-2&3\\3&-4\end{array}\right)</math><math>\left(\begin{array}{cccc}4&3\\3&2\end{array}\right) = </math><math>\left(\begin{array}{cccc}1&0\\0&1\end{array}\right)</math> |
---- | ---- | ||
Line 49: | Line 49: | ||
<p> If <math>A = \left(\begin{array}{cccc}a&b\\c&d\end{array}\right)</math> then the inverse of matrix A can be found using: | <p> If <math>A = \left(\begin{array}{cccc}a&b\\c&d\end{array}\right)</math> then the inverse of matrix A can be found using: | ||
− | + | <br> | |
− | <math>A^{-1}\frac{1}{detA}\left(\begin{array}{cccc}d&-b\\-c&a\end{array}\right)</math> | + | <math>A^{-1} = \frac{1}{detA}\left(\begin{array}{cccc}d&-b\\-c&a\end{array}\right)</math> |
Revision as of 07:15, 10 December 2012
Contents
Inverse of a Matrix
An n x n matrix A is said to have an inverse provided there exists an n x n matrix B such that AB = BA = In. We call B the inverse of A and denote it as A-1. Thus, AA-1 = A-1A = In. In this case, A is also called nonsingular.
Example.
$ A = \left(\begin{array}{cccc}4&3\\3&2\end{array}\right) $
$ A^{-1} = \left(\begin{array}{cccc}-2&3\\3&-4\end{array}\right) $
$ AA^{-1} = \left(\begin{array}{cccc}4&3\\3&2\end{array}\right) $$ \left(\begin{array}{cccc}-2&3\\3&-4\end{array}\right) = $ $ \left(\begin{array}{cccc}1&0\\0&1\end{array}\right) $
$ and A^{-1} = \left(\begin{array}{cccc}-2&3\\3&-4\end{array}\right) $$ \left(\begin{array}{cccc}4&3\\3&2\end{array}\right) = $$ \left(\begin{array}{cccc}1&0\\0&1\end{array}\right) $
Theorem 1
The inverse of a matrix, if it exists, is unique
Theorem 2
If A and B are both nonsingular n x n matrices (i.e. invertible), then AB is nonsingular and (AB)-1 = B-1A-1.
Corollary 1
If A1, A2, ..., Ar are n x n nonsingular matrices, then A1A2...Ar is nonsingular an (A1A2...Ar)-1 = Ar-1Ar-1-1...A1-1.
Theorem 3
If A is a nonsingular matrix, then A-1 is nonsingular and (A-1)-1 = A.
Theorem 4
If A is a nonsingular matrix, then AT is nonsingular and (A-1)T = (AT)-1.
Methods for determining the inverse of a matrix
Shortcut for determining the inverse of a 2 x 2 matrix
If $ A = \left(\begin{array}{cccc}a&b\\c&d\end{array}\right) $ then the inverse of matrix A can be found using:
$ A^{-1} = \frac{1}{detA}\left(\begin{array}{cccc}d&-b\\-c&a\end{array}\right) $