Line 4: Line 4:
 
<math>A=\left[\begin{array}{cccc}1&2&3&4\\5&6&7&8\end{array}\right]</math>
 
<math>A=\left[\begin{array}{cccc}1&2&3&4\\5&6&7&8\end{array}\right]</math>
 
<math>B=\left[\begin{array}{cccc}1&2\\5&6\\3&4\\7&8\end{array}\right]</math>
 
<math>B=\left[\begin{array}{cccc}1&2\\5&6\\3&4\\7&8\end{array}\right]</math>
 +
<math>B=\left[\begin{array}{cccc}1&2\\3&4\end{array}\right]</math>
 +
  
 
Given the matrix A, B, and C,
 
Given the matrix A, B, and C,

Revision as of 09:29, 14 November 2012

Matrix Multiplication and coordinate systems:


$ A=\left[\begin{array}{cccc}1&2&3&4\\5&6&7&8\end{array}\right] $ $ B=\left[\begin{array}{cccc}1&2\\5&6\\3&4\\7&8\end{array}\right] $ $ B=\left[\begin{array}{cccc}1&2\\3&4\end{array}\right] $


Given the matrix A, B, and C,

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood