Line 63: Line 63:
  
  
<math>
+
<font face="serif"><span style="font-size: 19px;"><math>
 
\text{ Define } u = r cos\theta - z sin\theta
 
\text{ Define } u = r cos\theta - z sin\theta
</math>
+
</math></span></font>
  
  
Line 73: Line 73:
  
  
<math>
+
<font face="serif"><span style="font-size: 19px;"><math>
 
\text{ Now }
 
\text{ Now }
</math>
+
</math></span></font>
  
  
Line 89: Line 89:
  
 
<math>
 
<math>
= \frac{\delta(\frac{r}{sin\theta})}{|sin\theta|}
+
= \frac{\delta(\frac{r}{sin\theta})}{|sin\theta|} = \frac{|sin\theta|}{|sin\theta|} \delta(r) = \delta(r)
</math>
+
 
+
 
+
<math>
+
= \frac{|sin\theta|}{|sin\theta|} \delta(r)  
+
 
</math>
 
</math>
  

Revision as of 16:50, 2 August 2012

ECE Ph.D. Qualifying Exam in "Communication, Networks, Signal, and Image Processing" (CS)

Question 1, August 2011, Part 1

Part 1,2]

 $ \color{blue}\text{Consider an image } f(x,y) \text{ with a forward projection} $

                $ \color{blue} p_{\theta}(r) = \mathcal{FP}\left \{ f(x,y) \right \} $

                             $ \color{blue} = \int_{-\infty}^{\infty}{f \left ( r cos(\theta) - z sin(\theta),r sin(\theta) + z cos(\theta) \right )dz}. $

$ \color{blue} \text{Let } F(\mu,\nu) \text{ be the continuous-time Fourier transform of } f(x,y) \text{ given by} $
              $ \color{blue} F(u,v) = \int_{-\infty}^{\infty}{\int_{-\infty}^{\infty}{f(x,y)e^{-j2\pi(ux,vy)}dx}dy} $

$ \color{blue} \text{and let } P_{\theta}(\rho) \text{ be the continuous-time Fourier transform of } p_{\theta}(r) \text{ given by} $
              $ \color{blue} P_{\theta}(\rho) = \int_{-\infty}^{\infty}{p_{\theta}(r)e^{-j2\pi(\rho r)}dr}. $


$ \color{blue}\text{a) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = \delta(x,y). $

$ \color{blue}\text{Solution 1:} $

$ P_{\theta}(\rho) = \int_{-\infty}^{+\infty}{\delta(r cos\theta - z sin\theta, r sin\theta + z cos \theta) dz} $


$ {\color{green} \text{Recall:}} $


$ {\color{green} \text{i) } \int_{-\infty}^{+\infty}{f(g(t)) \delta (t) dt} = f(g(t=0)) \int_{-\infty}^{+\infty}{\delta (t) dt} } $


$ {\color{green} \text{ii) } \int_{-\infty}^{+\infty}{\delta (\alpha t) dt} = \int_{-\infty}^{+\infty}{\delta (u) \frac{du}{|\alpha|}} = \frac{1}{|\alpha|} } $


$ {\color{green} \text{iii) } \delta() \text{ function is separable: } \delta(x,y) = \delta(x) \cdot \delta(y) } $


$ \text{ Define } u = r cos\theta - z sin\theta $


$ \Rightarrow dz = \frac{du}{|sin\theta|} $


$ \text{ Now } $


$ P_{\theta}(\rho) = \int_{-\infty}^{+\infty}{\delta(r cos\theta - z sin\theta, r sin\theta + z cos \theta) dz} $


$ P_{\theta}(\rho) = \int_{-\infty}^{+\infty}{\delta(g(u)) \delta(u) \frac{du}{|sin\theta|}} = \frac{\delta(u=0)}{|sin\theta|} $


$ = \frac{\delta(\frac{r}{sin\theta})}{|sin\theta|} = \frac{|sin\theta|}{|sin\theta|} \delta(r) = \delta(r) $


$ \color{blue}\text{Solution 2:} $

.QE 11 CS5 2 a sol2.PNG

$ P_{\theta}(\rho) = \int_{-\infty}^{+\infty}{\delta(r cos\theta - z sin\theta, r sin\theta + z cos \theta) dz} $

$ = \delta(r) $


$ \color{blue}\text{b) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = \delta(x-1,y-1). $

$ \color{blue}\text{Solution 1:} $

$ P_{\theta}(\rho) = \int_{-\infty}^{+\infty}{\delta(r cos\theta - z sin\theta - 1, r sin\theta + z cos \theta - 1) dz} $


$ = z \text{ when } \left\{\begin{matrix} r cos\theta - z sin\theta = 1 \\ r sin \theta + z cos \theta = 1 \end{matrix}\right. $

$ = \frac{r cos\theta - 1}{sin \theta}, \theta > 0 $



$ \color{blue}\text{Solution 2:} $

QE 11 CS5 2 b sol2.PNG

$ \tilde{p}_\theta(r) = p_{\theta}(r - \sqrt{1+1} cos(\theta - tan^{-1}(\frac{1}{1}))) $

$ = p_\theta(r - \sqrt{2} cos(\theta - \frac{\pi}{4})) $

$ = \delta(r - \sqrt{2} cos(\theta - \frac{\pi}{4})) $



$ \color{blue}\text{c) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = rect \left(\sqrt[]{x^2+y^2} \right). $


$ \color{blue}\text{Solution 1:} $


$ P_{\theta}(\rho) = \int_{-\infty}^{+\infty}{rect(\sqrt{(r cos\theta - z sin\theta)^2, (r sin\theta + z cos \theta)^2)} dz} $


$ = \int_{-\sqrt{\frac{1}{4} - r^2}}^{\sqrt{\frac{1}{4} - r^2}}{1 dz} $

$ = \left\{\begin{matrix} &\sqrt{1 - 4r^2}, &\text{ if }|r| \leq \frac{1}{2} \\ &0, &\text{ otherwise} \end{matrix}\right. $



$ \color{blue}\text{Solution 2:} $

QE 11 CS5 2 c sol2.PNG

$ P_{\theta}(\rho) = \int_{-\infty}^{+\infty}{f(r cos\theta - z sin\theta, r sin\theta + z cos \theta) dz} $


$ = \int_{-\sqrt{\frac{1}{4} - r^2}}^{\sqrt{\frac{1}{4} - r^2}}{1 dz} = \sqrt{1 - 4r^2}, \text{ if }|r| \leq \frac{1}{2} $

$ \text{ else } P_{\theta}(\rho) = 0 $


$ \color{blue}\text{d) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = rect \left(\sqrt[]{(x-1)^2+(y-1)^2} \right). $

$ \color{blue}\text{Solution 1:} $


$ P_{\theta}(\rho) = \int_{-\infty}^{+\infty}{rect \left( \sqrt{(r cos\theta - z sin\theta - 1)^2, (r sin\theta + z cos \theta - 1)^2} \right) dz} $


$ = \int_{-\sqrt{\frac{1}{4} - (r - (cos\theta + sin\theta))^2}}^{\sqrt{\frac{1}{4} - (r - (cos\theta + sin\theta))^2}}{1 dz} $

$ = \left\{\begin{matrix} &\sqrt{1 - 4(r - (cos\theta + sin\theta))^2}, &\text{ if }|r| \leq \frac{1}{2} \\ &0, &\text{ otherwise} \end{matrix}\right. $


$ \color{blue}\text{Solution 2:} $

$ \tilde{p}_\theta(r) = p_{\theta}(r - \sqrt{1+1} cos(\theta - tan^{-1}(\frac{1}{1}))) $

$ = p_\theta(r - \sqrt{2} cos(\theta - \frac{\pi}{4})) $

$ \text{ where } P_\theta(r) = \left\{\begin{matrix} &\sqrt{1 - 4r^2}, &\text{ if }|r| \leq \frac{1}{2} \\ &0, &\text{ else} \end{matrix}\right. $


$ \color{blue}\text{e) Describe in precise detail, the steps required to perform filtered back projection (FBP) reconstruction of } f(x,y). $


$ \color{blue}\text{Solution 1:} $

$ 1. \text{ Compute } \rho_{\theta}(r) $


$ 2. \text{ Compute FT of step 1.} $

$ 3. \text{ Multiply step 2 by the filter } H(\rho) = |\rho| = f_c \left [ rect(\frac{f}{2f_c}) - \Lambda(\frac{f}{f_c}) \right ], \text{ for some cut-off, } f_c $

$ 4. \text{ Compute inverseFT of step 3.} $


$ \color{blue}\text{Solution 2:} $

$ 1. \text{ Measure the projections } \rho_{\theta}(r) \text{ at various angles} $

$ 2. \text{ Filter the projections } \rho_{\theta}(r) \text{ with } h(r) \text{, where } H(\rho) = |\rho| \text{ and get } g_{\theta}(r) $

$ 3. \text{ Back project } g_{\theta}(r) \text{ along } r = xcos\theta + ysin\theta \text{ and get } $

$ f(x,y) = \int_{0}^{\pi}{g_\theta(xcos\theta + ysin\theta)d\theta} $


"Communication, Networks, Signal, and Image Processing" (CS)- Question 5, August 2011

Go to


Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett