Line 1: Line 1:
 
= [[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]] in "Communication, Networks, Signal, and Image Processing" (CS)  =
 
= [[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]] in "Communication, Networks, Signal, and Image Processing" (CS)  =
  
= [[ECE-QE_CS1-2011|Question 1, August 2011]], Part 1 =
+
= [[ECE-QE_CS5-2011|Question 1, August 2011]], Part 1 =
  
:[[ECE-QE_CS1-2011_solusion-1|Part 1]],[[ECE-QE CS1-2011 solusion-2|2]]]
+
:[[ECE-QE_CS5-2011_solusion-1|Part 1]],[[ECE-QE CS1-2011 solusion-2|2]]]
  
 
----
 
----
Line 184: Line 184:
 
----
 
----
  
"Communication, Networks, Signal, and Image Processing" (CS)- Question 1, August 2011  
+
"Communication, Networks, Signal, and Image Processing" (CS)- Question 5, August 2011  
  
 
Go to  
 
Go to  

Revision as of 12:48, 31 July 2012

ECE Ph.D. Qualifying Exam in "Communication, Networks, Signal, and Image Processing" (CS)

Question 1, August 2011, Part 1

Part 1,2]

 $ \color{blue}\text{Consider an image } f(x,y) \text{ with a forward projection} $

                $ \color{blue} p_{\theta}(r) = \mathcal{FP}\left \{ f(x,y) \right \} $

                             $ \color{blue} = \int_{-\infty}^{\infty}{f \left ( r cos(\theta) - z sin(\theta),r sin(\theta) + z cos(\theta) \right )dz}. $

$ \color{blue} \text{Let } F(\mu,\nu) \text{ be the continuous-time Fourier transform of } f(x,y) \text{ given by} $
              $ \color{blue} F(u,v) = \int_{-\infty}^{\infty}{\int_{-\infty}^{\infty}{f(x,y)e^{-j2\pi(ux,vy)}dx}dy} $

$ \color{blue} \text{and let } P_{\theta}(\rho) \text{ be the continuous-time Fourier transform of } p_{\theta}(r) \text{ given by} $
              $ \color{blue} P_{\theta}(\rho) = \int_{-\infty}^{\infty}{p_{\theta}(r)e^{-j2\pi(\rho r)}dr}. $


$ \color{blue}\text{a) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = \delta(x,y). $

$ \color{blue}\text{Solution 1:} $

$ P_{\theta}(\rho) = \int_{-\infty}^{+\infty}{\delta(r cos\theta - z sin\theta, r sin\theta + z cos \theta) dz} $


$ = z \text{ when } \left\{\begin{matrix} r cos\theta - z sin\theta = 0 \\ r sin \theta + z cos \theta = 0 \end{matrix}\right. $

$ = \frac{r cos\theta}{sin \theta}, \theta > 0 $


$ \color{blue}\text{Solution 2:} $

here put sol.2


$ \color{blue}\text{b) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = \delta(x-1,y-1). $

$ \color{blue}\text{Solution 1:} $

$ P_{\theta}(\rho) = \int_{-\infty}^{+\infty}{\delta(r cos\theta - z sin\theta - 1, r sin\theta + z cos \theta - 1) dz} $


$ = z \text{ when } \left\{\begin{matrix} r cos\theta - z sin\theta = 1 \\ r sin \theta + z cos \theta = 1 \end{matrix}\right. $

$ = \frac{r cos\theta - 1}{sin \theta}, \theta > 0 $



$ \color{blue}\text{Solution 2:} $

sol2 here



$ \color{blue}\text{c) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = rect \left(\sqrt[]{x^2+y^2} \right). $


$ \color{blue}\text{Solution 1:} $


$ P_{\theta}(\rho) = \int_{-\infty}^{+\infty}{rect(\sqrt{(r cos\theta - z sin\theta)^2, (r sin\theta + z cos \theta)^2) dz} $


$ = \int_{-\sqrt{\frac{1}{4} - r^2}}^{\sqrt{\frac{1}{4} - r^2}}{1 dz} $

$ = \left\{\begin{matrix} &\sqrt{1 - 4r^2}, &\text{ if }|r| \leq \frac{1}{2} \\ &0, &\text{ otherwise} \end{matrix}\right. $



$ \color{blue}\text{Solution 2:} $

sol2 here


$ \color{blue}\text{d) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = rect \left(\sqrt[]{(x-1)^2+(y-1)^2} \right). $

$ \color{blue}\text{Solution 1:} $


$ P_{\theta}(\rho) = \int_{-\infty}^{+\infty}{rect(\sqrt{(r cos\theta - z sin\theta - 1)^2, (r sin\theta + z cos \theta - 1)^2) dz} $


$ = \int_{-\sqrt{\frac{1}{4} - (r - (cos\theta + sin\theta))^2}}^{\sqrt{\frac{1}{4} - (r - (cos\theta + sin\theta))^2}}{1 dz} $

$ = \left\{\begin{matrix} &\sqrt{1 - 4(r - (cos\theta + sin\theta))^2}, &\text{ if }|r| \leq \frac{1}{2} \\ &0, &\text{ otherwise} \end{matrix}\right. $


$ \color{blue}\text{Solution 2:} $

sol2 here


$ \color{blue}\text{e) Describe in precise detail, the steps required to perform filtered back projection (FBP) reconstruction of } f(x,y). $


$ \color{blue}\text{Solution 1:} $

$ 1. \text{ Compute } \rho_{\theta}(r). $

$ 2. \text{ Compute FT of step 1.} $

$ 3. \text{ Multiply step 2 by the filter } H(\rho) = f_c[rect(\frac{f}{2f_c}) - \Lambda(\frac{f}{f_c})]. $

$ 4. \text{ Compute inverseFT of step 3.} $



$ \color{blue}\text{Solution 2:} $

sol2 here


"Communication, Networks, Signal, and Image Processing" (CS)- Question 5, August 2011

Go to


Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett