(New page: = ECE Ph.D. Qualifying Exam in "Communication, Networks, Signal, and Image Processing" (CS) = = Question 1, August 2011, Part 1 = :[[ECE...) |
|||
Line 6: | Line 6: | ||
---- | ---- | ||
+ | <font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue}\text{Consider an image } f(x,y) \text{ with a forward projection} | ||
+ | </math></span></font> | ||
− | | + | <math>\color{blue} |
+ | p_{\theta}(r) = \mathcal{FP}\left \{ f(x,y) \right \} | ||
+ | </math><br> | ||
− | + | <math>\color{blue} | |
+ | = \int_{-\infty}^{\infty}{f \left ( r cos(\theta) - z sin(\theta),r sin(\theta) + z cos(\theta) \right )dz}. | ||
+ | </math> | ||
− | + | <math>\color{blue} | |
+ | \text{Let } F(\mu,\nu) \text{ be the continuous-time Fourier transform of } f(x,y) \text{ given by} | ||
+ | </math><br> | ||
+ | <math>\color{blue} | ||
+ | F(u,v) = \int_{-\infty}^{\infty}{\int_{-\infty}^{\infty}{f(x,y)e^{-j2\pi(ux,vy)}dx}dy} | ||
+ | </math><br> | ||
− | <math> | + | <math>\color{blue} |
+ | \text{and let } P_{\theta}(\rho) \text{ be the continuous-time Fourier transform of } p_{\theta}(r) \text{ given by} | ||
+ | </math><br> | ||
+ | <math>\color{blue} | ||
+ | P_{\theta}(\rho) = \int_{-\infty}^{\infty}{p_{\theta}(r)e^{-j2\pi(\rho r)}dr}. | ||
+ | </math><br> | ||
− | |||
− | |||
− | |||
− | <math> | + | <math>\color{blue}\text{a) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = \delta(x,y). |
− | \ | + | </math><br> |
− | \ | + | |
− | </math> | + | ===== <math>\color{blue}\text{Solution 1:}</math> ===== |
+ | |||
− | |||
− | |||
− | |||
− | |||
---- | ---- | ||
Line 37: | Line 47: | ||
---- | ---- | ||
− | <math>\color{blue} | + | <math>\color{blue}\text{b) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = \delta(x-1,y-1). |
− | + | ||
</math><br> | </math><br> | ||
<math>\color{blue}\text{Solution 1:}</math> | <math>\color{blue}\text{Solution 1:}</math> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
---- | ---- | ||
Line 59: | Line 61: | ||
---- | ---- | ||
− | |||
− | |||
− | |||
− | <math>\color{blue}\text{ | + | <math>\color{blue}\text{c) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = rect \left(\sqrt[]{x^2+y^2} \right). |
+ | </math><br> | ||
− | |||
− | |||
− | |||
− | |||
− | + | <math>\color{blue}\text{Solution 1:}</math> | |
− | + | ||
− | </math> | + | |
---- | ---- | ||
Line 81: | Line 77: | ||
---- | ---- | ||
− | <math>\color{blue} | + | <math>\color{blue}\text{d) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = rect \left(\sqrt[]{(x-1)^2+(y-1)^2} \right). |
− | + | ||
</math><br> | </math><br> | ||
<math>\color{blue}\text{Solution 1:}</math> | <math>\color{blue}\text{Solution 1:}</math> | ||
− | + | <math> | |
− | + | ||
− | + | ||
− | + | </math> | |
− | + | ||
− | </math> | + | |
---- | ---- | ||
Line 101: | Line 92: | ||
sol2 here | sol2 here | ||
---- | ---- | ||
− | <math>\color{blue} | + | <math>\color{blue}\text{e) Describe in precise detail, the steps required to perform filtered back projection (FBP) reconstruction of } f(x,y). |
− | + | ||
</math><br> | </math><br> | ||
+ | |||
<math>\color{blue}\text{Solution 1:}</math> | <math>\color{blue}\text{Solution 1:}</math> | ||
− | + | <math> | |
− | + | ||
− | + | ||
− | + | ||
− | + | </math> | |
− | + | ||
− | </math> | + | |
---- | ---- | ||
Line 127: | Line 113: | ||
Go to | Go to | ||
− | *Part 1: [[ECE- | + | *Part 1: [[ECE-QE_CS5-2011_solusion-1|solutions and discussions]] |
− | *Part 2: [[ECE-QE | + | *Part 2: [[ECE-QE CS5-2011 solusion-2|solutions and discussions]] |
---- | ---- |
Revision as of 11:01, 31 July 2012
ECE Ph.D. Qualifying Exam in "Communication, Networks, Signal, and Image Processing" (CS)
Question 1, August 2011, Part 1
$ \color{blue}\text{Consider an image } f(x,y) \text{ with a forward projection} $
$ \color{blue} p_{\theta}(r) = \mathcal{FP}\left \{ f(x,y) \right \} $
$ \color{blue} = \int_{-\infty}^{\infty}{f \left ( r cos(\theta) - z sin(\theta),r sin(\theta) + z cos(\theta) \right )dz}. $
$ \color{blue} \text{Let } F(\mu,\nu) \text{ be the continuous-time Fourier transform of } f(x,y) \text{ given by} $
$ \color{blue} F(u,v) = \int_{-\infty}^{\infty}{\int_{-\infty}^{\infty}{f(x,y)e^{-j2\pi(ux,vy)}dx}dy} $
$ \color{blue} \text{and let } P_{\theta}(\rho) \text{ be the continuous-time Fourier transform of } p_{\theta}(r) \text{ given by} $
$ \color{blue} P_{\theta}(\rho) = \int_{-\infty}^{\infty}{p_{\theta}(r)e^{-j2\pi(\rho r)}dr}. $
$ \color{blue}\text{a) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = \delta(x,y). $
$ \color{blue}\text{Solution 1:} $
$ \color{blue}\text{Solution 2:} $
here put sol.2
$ \color{blue}\text{b) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = \delta(x-1,y-1). $
$ \color{blue}\text{Solution 1:} $
$ \color{blue}\text{Solution 2:} $
sol2 here
$ \color{blue}\text{c) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = rect \left(\sqrt[]{x^2+y^2} \right). $
$ \color{blue}\text{Solution 1:} $
$ \color{blue}\text{Solution 2:} $
sol2 here
$ \color{blue}\text{d) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = rect \left(\sqrt[]{(x-1)^2+(y-1)^2} \right). $
$ \color{blue}\text{Solution 1:} $
$ \color{blue}\text{Solution 2:} $
sol2 here
$ \color{blue}\text{e) Describe in precise detail, the steps required to perform filtered back projection (FBP) reconstruction of } f(x,y). $
$ \color{blue}\text{Solution 1:} $
$ \color{blue}\text{Solution 2:} $
sol2 here
"Communication, Networks, Signal, and Image Processing" (CS)- Question 1, August 2011
Go to
- Part 1: solutions and discussions
- Part 2: solutions and discussions