Line 12: Line 12:
  
 
===== <math>\color{blue}\text{Solution 1:}</math>  =====
 
===== <math>\color{blue}\text{Solution 1:}</math>  =====
<math> \mathbf{X}(t) \text{ is SSS if } F_{(t_1+\tau)...(t_n+\tau)}(x_1,...,x_n) \text{ does not depend on } \tau. \text{ To show that, we can show that } \Phi_{(t_1+\tau)...(t_n+\tau)}(\omega_1,...,\omega_n)  \text{ does not depend on } \tau:
+
<font face="Times New Roman" font size="5"><math>
</math>
+
\mathbf{X}(t) \text{ is SSS if } F_{(t_1+\tau)...(t_n+\tau)}(x_1,...,x_n) \text{ does not depend on } \tau. \text{ To show that, we can show that } \Phi_{(t_1+\tau)...(t_n+\tau)}(\omega_1,...,\omega_n)  \text{ does not depend on } \tau:
 +
</math></font>
  
  
Line 29: Line 30:
 
\Phi_{(t_1+\tau)...(t_n+\tau)}(\omega_1,...,\omega_n) = E \left [e^{Y(t_j+\tau)} \right ] = \Phi_{(t_1+\tau)...(t_n+\tau)}(1)
 
\Phi_{(t_1+\tau)...(t_n+\tau)}(\omega_1,...,\omega_n) = E \left [e^{Y(t_j+\tau)} \right ] = \Phi_{(t_1+\tau)...(t_n+\tau)}(1)
 
</math>
 
</math>
 +
  
  
Line 49: Line 51:
 
=\sum_{i,j=1}^{n}{\omega_j^2 cov(t_j,t_j)}  + \sum_{i,j=1}^{n}{\omega_i \omega_j cov(t_j,t_j)}  
 
=\sum_{i,j=1}^{n}{\omega_j^2 cov(t_j,t_j)}  + \sum_{i,j=1}^{n}{\omega_i \omega_j cov(t_j,t_j)}  
 
</math>
 
</math>
 +
 +
  
 
<font face="Times New Roman" font size="5"><math>
 
<font face="Times New Roman" font size="5"><math>

Revision as of 13:41, 29 July 2012

ECE Ph.D. Qualifying Exam in "Communication, Networks, Signal, and Image Processing" (CS)

Question 1, August 2011, Part 2

Part 1,2]

 $ \color{blue}\text{Show that if a continuous-time Gaussian random process } \mathbf{X}(t) \text{ is wide-sense stationary, it is also strict-sense stationary.} $


$ \color{blue}\text{Solution 1:} $

$ \mathbf{X}(t) \text{ is SSS if } F_{(t_1+\tau)...(t_n+\tau)}(x_1,...,x_n) \text{ does not depend on } \tau. \text{ To show that, we can show that } \Phi_{(t_1+\tau)...(t_n+\tau)}(\omega_1,...,\omega_n) \text{ does not depend on } \tau: $


          $ \Phi_{(t_1+\tau)...(t_n+\tau)}(\omega_1,...,\omega_n) = E \left [e^{i\sum_{j=1}^{n}{\omega_jX(t_j+\tau)}} \right ] $


$ \text{Define } Y(t_j+\tau) = \sum_{j=1}^{n}{\omega_jX(t_j+\tau)} \text{, so} $


          $ \Phi_{(t_1+\tau)...(t_n+\tau)}(\omega_1,...,\omega_n) = E \left [e^{Y(t_j+\tau)} \right ] = \Phi_{(t_1+\tau)...(t_n+\tau)}(1) $


$ \text{Since } Y(t) \text{ is Gaussian, it is characterized just by its mean and variance. So, we just need to show that mean and variance of } Y(t) \text{do not depend on } \tau. \text{Since } Y(t) \text{ is WSS, its mean is constant and does not depend on . For variance} $


          $ var(Y(t_j+\tau)) = E \left [(\sum_{j=1}^{n}{w_j(X(t_j+\tau)-\mu)^2} \right ] $


          $ =\sum_{j=1}^{n}{\omega_j^2E \left [ (X(t_j+\tau)-\mu)^2 \right ]} + \sum_{i,j=1}^{n}{\omega_i \omega_j E \left[ (X(t_i+\tau)-\mu)(X(t_j+\tau)-\mu) \right]} $


          $ =\sum_{i,j=1}^{n}{\omega_j^2 cov(t_j,t_j)} + \sum_{i,j=1}^{n}{\omega_i \omega_j cov(t_j,t_j)} $


$ \text{Which does not depend on } \tau. $



$ \color{blue}\text{Solution 2:} $

$ \mathbf{X}(t) \text{ is SSS if } F_{(t_1+\tau)...(t_n+\tau)}(x_1,...,x_n) \text{ does not depend on } \tau. \text{ To show that, we can show that } \Phi_{(t_1+\tau)...(t_n+\tau)}(\omega_1,...,\omega_n) \text{ does not depend on } \tau: $


"Communication, Networks, Signal, and Image Processing" (CS)- Question 1, August 2011

Go to


Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett