Line 6: Line 6:
  
 
==Question from [[ECE_PhD_QE_CNSIP_Jan_2001_Problem1|ECE QE January 2001]]==  
 
==Question from [[ECE_PhD_QE_CNSIP_Jan_2001_Problem1|ECE QE January 2001]]==  
Question here
+
'''(a) (7 pts)'''
 +
 
 +
Let <math class="inline">A</math>  and <math class="inline">B</math>  be statistically independent events in the same probability space. Are <math class="inline">A</math>  and <math class="inline">B^{C}</math>  independent? (You must prove your result).
 +
 
 +
'''(b) (7 pts)'''
 +
 
 +
Can two events be statistically independent and mutually exclusive? (You must derive the conditions on A  and B  for this to be true or not.)
 +
 
 +
''(c) (6 pts)'''
 +
 
 +
State the Axioms of Probability.
 
----
 
----
 
==Share and discuss your solutions below.==
 
==Share and discuss your solutions below.==
 
----
 
----
 
=Solution 1 (retrived from [[ECE600_QE_2000_August|here]])=
 
=Solution 1 (retrived from [[ECE600_QE_2000_August|here]])=
Write it here
+
'''(a) '''
 +
 
 +
<math class="inline">P\left(A\right)=P\left(A\cap\left(B\cup B^{C}\right)\right)=P\left(\left(A\cap B\right)\cup\left(A\cap B^{C}\right)\right)=P\left(A\cap B\right)+P\left(A\cap B^{C}\right)=P\left(A\right)P\left(B\right)+P\left(A\cap B^{C}\right).</math>
 +
 
 +
<math class="inline">P\left(A\cap B^{C}\right)=P\left(A\right)-P\left(A\right)P\left(B\right)=P\left(A\right)\left(1-P\left(B\right)\right)=P\left(A\right)P\left(B^{C}\right).</math>
 +
 
 +
<math class="inline">\therefore A\text{ and }B^{C}\text{ are independent. }</math>
 +
 
 +
'''(b)'''
 +
 
 +
If <math class="inline">P\left(A\right)=0</math>  or <math class="inline">P\left(B\right)=0</math> , then A  and B  are statistically independent and mutually exclusive. Prove this:
 +
 
 +
Without loss of generality, suppose that <math class="inline">P\left(A\right)=0</math> . <math class="inline">0=P\left(A\right)\geq P\left(A\cap B\right)\geq0\Longrightarrow P\left(A\cap B\right)=0\qquad\therefore\text{mutually excclusive}.</math>
 +
 
 +
<math class="inline">P\left(A\cap B\right)=0=P\left(A\right)P\left(B\right)\qquad\therefore\text{statistically independent.}</math>
 +
 
 +
'''(c) '''
 +
 
 +
'''Axioms of probability'''=
 +
 
 +
• The probability measure <math class="inline">P\left(\cdot\right)</math>  corresponding to <math class="inline">S</math>  and <math class="inline">F\left(S\right)</math>  is the assignment of a real number <math class="inline">P\left(A\right)</math>  to each <math class="inline">A\in F\left(S\right)</math>  satisfying following properties. Axioms of probability:
 +
 
 +
1. <math class="inline">P\left(A\right)\geq0</math> , <math class="inline">\forall A\in F\left(S\right)</math> .
 +
 
 +
2. <math class="inline">P\left(S\right)=1</math> .
 +
 
 +
3. If <math class="inline">A_{1}</math>  and <math class="inline">A_{2}</math>  are disjoint events, then <math class="inline">P\left(A_{1}\cup A_{2}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)</math> . If <math class="inline">A_{1},A_{2}\in F\left(S\right)</math>  and <math class="inline">A_{1}\cap A_{2}=\varnothing</math> , then <math class="inline">A_{1}</math>  and <math class="inline">A_{2}</math>  are disjoint events.
 +
 
 +
4. If <math class="inline">A_{1},A_{2},\cdots,A_{n},\cdots\in F\left(S\right)</math>  is a countable collection of disjointed events, then <math class="inline">P\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P\left(A_{i}\right)</math> .
 +
 
 +
• <math class="inline">P\left(\cdot\right)</math>  is a set function. <math class="inline">P\left(\cdot\right):F\left(S\right)\rightarrow\mathbf{R}</math> .
 +
 
 +
• If you want to talk about the probability of a single output <math class="inline">\omega_{0}\in S</math> , you do so by considering the single event
 +
 
 
----
 
----
 
==Solution 2==
 
==Solution 2==

Revision as of 05:42, 17 July 2012


Question from ECE QE January 2001

(a) (7 pts)

Let $ A $ and $ B $ be statistically independent events in the same probability space. Are $ A $ and $ B^{C} $ independent? (You must prove your result).

(b) (7 pts)

Can two events be statistically independent and mutually exclusive? (You must derive the conditions on A and B for this to be true or not.)

(c) (6 pts)'

State the Axioms of Probability.


Share and discuss your solutions below.


Solution 1 (retrived from here)

(a)

$ P\left(A\right)=P\left(A\cap\left(B\cup B^{C}\right)\right)=P\left(\left(A\cap B\right)\cup\left(A\cap B^{C}\right)\right)=P\left(A\cap B\right)+P\left(A\cap B^{C}\right)=P\left(A\right)P\left(B\right)+P\left(A\cap B^{C}\right). $

$ P\left(A\cap B^{C}\right)=P\left(A\right)-P\left(A\right)P\left(B\right)=P\left(A\right)\left(1-P\left(B\right)\right)=P\left(A\right)P\left(B^{C}\right). $

$ \therefore A\text{ and }B^{C}\text{ are independent. } $

(b)

If $ P\left(A\right)=0 $ or $ P\left(B\right)=0 $ , then A and B are statistically independent and mutually exclusive. Prove this:

Without loss of generality, suppose that $ P\left(A\right)=0 $ . $ 0=P\left(A\right)\geq P\left(A\cap B\right)\geq0\Longrightarrow P\left(A\cap B\right)=0\qquad\therefore\text{mutually excclusive}. $

$ P\left(A\cap B\right)=0=P\left(A\right)P\left(B\right)\qquad\therefore\text{statistically independent.} $

(c)

Axioms of probability=

• The probability measure $ P\left(\cdot\right) $ corresponding to $ S $ and $ F\left(S\right) $ is the assignment of a real number $ P\left(A\right) $ to each $ A\in F\left(S\right) $ satisfying following properties. Axioms of probability:

1. $ P\left(A\right)\geq0 $ , $ \forall A\in F\left(S\right) $ .

2. $ P\left(S\right)=1 $ .

3. If $ A_{1} $ and $ A_{2} $ are disjoint events, then $ P\left(A_{1}\cup A_{2}\right)=P\left(A_{1}\right)+P\left(A_{2}\right) $ . If $ A_{1},A_{2}\in F\left(S\right) $ and $ A_{1}\cap A_{2}=\varnothing $ , then $ A_{1} $ and $ A_{2} $ are disjoint events.

4. If $ A_{1},A_{2},\cdots,A_{n},\cdots\in F\left(S\right) $ is a countable collection of disjointed events, then $ P\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P\left(A_{i}\right) $ .

$ P\left(\cdot\right) $ is a set function. $ P\left(\cdot\right):F\left(S\right)\rightarrow\mathbf{R} $ .

• If you want to talk about the probability of a single output $ \omega_{0}\in S $ , you do so by considering the single event


Solution 2

Write it here.


Back to QE CS question 1, January 2001

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett